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a b s t r a c t

Atmospheric transport of fine particulate matter (PM2.5), the leading environmental risk factor for public
health, is estimated to exert substantial transboundary effects at present. During the past several dec-
ades, human-produced pollutant emissions have undergone drastic and regionally distinctive changes,
yet it remains unclear about the resulting global transboundary health impacts. Here we show that
between 1950 and 2014, global anthropogenic PM2.5 has led to 185.7 million premature deaths cumula-
tively, including about 14% from transboundary pollution. Among four country groups at different afflu-
ence levels, on a basis of per capita contribution to transboundary mortality, a richer region tends to exert
severer cumulative health externality, with the poorest bearing the worst net externality after contrast-
ing import and export of pollution mortality. The temporal changes in transboundary mortality and
cross-regional inequality are substantial. Effort to reduce PM2.5-related transboundary mortality should
seek international collaborative strategies that account for historical responsibility and inequality.

� 2021 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

Fine particulate matter (PM2.5) in the air is estimated to cause
millions of premature deaths each year at present [1–3], and might
be a major atmospheric carrier for transmission of deadly viruses
like SARS-CoV-2 [4,5]. To date, actions to mitigate PM2.5 pollution
have mainly focused on reducing local emissions [6–8]. However,
it is being increasingly recognized that ambient PM2.5 can be trans-
ported various distances to exert worldwide impacts [3,9–11].
Thus the success of local air quality protection is affected by how
adequately transboundary pollution is accounted for. Since the
start of the Third Industrial Revolution decades ago, the world
has seen profound changes in the magnitude and distribution of
emissions driven by growth and geographical restructuring of the
global economy and coincident movement of emission source
regions [12–14]. Such emission changes may have been companied
by considerable variation in transboundary health impacts associ-
ated with PM2.5, which are complicated by emission-dependent
chemistry to form PM2.5 [15], location-dependent transboundary
transport pathway and efficiency [9,16,17], spatial matching
between population and transboundary pollution [18–20], and
nonlinear health response to pollution exposure [1].

The historical evolution of transboundary impacts has impor-
tant implications for cross-regional health inequality, as each
region may have caused and been exposed to different and tempo-
rally varying transboundary pollution. Health inequality is associ-
ated with unnecessary, avoidable, unfair and unjust differences
in health status between population groups [21,22]; and a strategy
to foster health equality is crucial to the sustainability of economic
growth [23]. Indeed, the transboundary PM2.5 pollution is closely
tied to the 3rd (Good Health and Well-being) and 10th (Reduced
Inequalities) Sustainable Development Goals (SDGs) of the United
Nations [24]. As successful PM2.5 mitigation is vital for achieve-
ment of the SDGs, a historical understanding of transboundary
PM2.5 health impacts helps uncover regional responsibilities and
cross-regional inequality lessons, which together serve as a basis
to establish future concerted mitigation strategy.
ulletin,
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However, little is known about the quantitative historical evo-
lution of health impacts and embedded equality issues associated
with transboundary PM2.5 during the past several decades, despite
that many studies have addressed the global health impacts of
PM2.5 in recent years [1–3,10,16,17,19,25–34]. The global
PM2.5-related health impact estimate from the Global Burden of
Disease studies are since 1990 [30–34], and a recent model-
based work extended the analysis back to 1960 [29]. These work
estimated millions of annual global premature mortality associ-
ated with total PM2.5 exposure, with no investigation of the contri-
bution of transboundary PM2.5. Studies of transboundary health
impacts were conducted based on model simulations of pollution
chemistry and transport, typically for specific, recent years (e.g.,
2007 in Zhang et al. [3], 2001 in HTAP1 [17], 2010 in HTAP2 [16],
2000 in Liu et al. [10], and 2014 in Du et al. [18]), or for limited
times and regions (e.g., 2005, 2011 and 2018 within the United
States in Dedoussi et al. [19], and 2017 within China in Fang
et al. [20]). These studies showed considerable contributions of
transboundary PM2.5 to present-day global/regional premature
mortality; yet they did not address the long-term changes in global
transboundary health impacts and associated cross-regional
inequality.

Here we assess the health impacts of ambient anthropogenic
PM2.5 pollution from 1950 through 2014, effects of transboundary
pollution, and embedded cross-regional health inequality. By inte-
grating historical emission data, atmospheric chemical transport
model (CTM) simulations, satellite-based surface PM2.5 data and
pollution exposure–response modeling, we calculate worldwide
PM2.5-relatedprematuredeaths attributable to anthropogenic emis-
sions in four individual country groups categorized by affluence
level (i.e., per capita gross national income). These groups include
high-income group (i.e., developed countries), uppermiddle income
group (e.g., China and Russia), lower middle income group (e.g.,
India and Indonesia) and low-income group (in Africa and parts of
Asia) (Fig. S1 online), following the definitions of the United Nations
[35]. We then analyze the driving factors of the evolution of anthro-
pogenic PM2.5-relatedmortality, and reveal the transboundarymor-
tality impacts and the embedded inequality problem.
2. Materials and methods

Supplementary materials provide our methodological details
and uncertainty discussion. Fig. S2 (online) shows the flowchart
of our study. First, we combine anthropogenic emissions datasets
from the Community Emissions Data System (CEDS) [12] and the
Multi-resolution Emission Inventory for China (MEIC) [36–39] to
drive the GEOS-Chem CTM (version 11-01) to simulate near-
surface PM2.5 concentrations at a horizontal resolution of 2.5�
longitude � 2.0� latitude in the years of 1951, 1960, 1970, 1980,
1990, 2000 and 2014. Simulated aerosols include secondary inor-
ganic aerosols (SIOA, sulfate + nitrate + ammonium), black carbon,
primary organic aerosols (POA), secondary organic aerosols (SOA),
dust and sea salt. For each year, a set of six simulations are con-
ducted, with a base case including all (global anthropogenic and
natural) emissions and five additional simulations excluding
anthropogenic emissions of the globe or one country group; every-
thing else is kept unchanged. In all simulations, meteorological
conditions are fixed at 2014 levels to better quantify the anthro-
pogenic contributions; a sensitivity test for 1990 shows that using
the meteorological data in 1990 or 2014 in the model leads to sim-
ilar numbers of PM2.5-related deaths and similar patterns of trans-
boundary health impacts (Fig. S3 online). See detailed information
of GEOS-Chem simulations in Supplementary materials: S1.

Second, we calculate chemical efficiencies (CEs) (i.e., annual
mean concentration per unit of emission) for SIOA, black carbon
2

and POA in these simulation years, linearly interpolate these CEs
to the years over 1950–2013 with no explicit GEOS-Chem simula-
tions, and then convert anthropogenic emissions to concentrations
in those years. The use of CEs follows our previous work [15,18,40];
this is a reasonable choice to save computational resources given
the relatively linear relationships between emissions and concen-
trations for these pollutants [40]. We linearly interpolate anthro-
pogenic SOA concentrations to other years; a sensitivity test
suggests that using either interpolation or CE has a small effect
on the calculated global population-weighted SOA (with NRMSD
less than 7%, Fig. S4 online), thus a minor effect on the total
PM2.5 concentrations and resulting mortality. Natural PM2.5 con-
centrations represent the 2014 situation to be consistent with
the meteorology. Supplementary materials: S2 provides detailed
information about this step.

Third, for the year of 2014 we use a satellite-derived surface
PM2.5 concentration dataset (V4.GL.02) [41] at a resolution of
0.1��0.1� to further establish a conversion map from the CTM
results for total (anthropogenic + natural) PM2.5 concentrations at
2.5��2.0� to the fine-resolution grid and correct the model bias.
We then apply the same conversion map to other years. Compar-
ison of such CTM-based, corrected results against the satellite-
based PM2.5 data from 2001 to 2013, for which years there are
no explicit GEOS-Chem simulations, shows high consistency for
12 individual regions across the globe with R2 ranging from 0.91
to 0.99 and the NRMSD lower than 1%. See more information in
Supplementary materials: S3. This supports our method in the
2nd and 3rd steps.

Finally, we apply the corrected yearly total PM2.5 concentrations
to GEMM NCD + LRI [1] to calculate PM2.5-related premature
deaths worldwide, as detailed in Supplementary materials: S4.
We then calculate annual mortality associated with anthropogenic
PM2.5 originating from individual country groups, by multiplying
the total PM2.5-related mortality by the ratio of CTM simulated
anthropogenic concentrations caused by each group to total
PM2.5 concentrations; this direct proportion approach has been
widely used [3,25,40]. Year-, country-, disease- and age-specific
baseline mortality data since 1990 are taken from the GBD 2017
dataset [42]. The baseline mortality rates in 1990 are applied to
all prior years with no data available; a sensitivity test linearly
extrapolating the rates to earlier years, following a previous work
[29], shows similar mortality results (Fig. S5 online).

As detailed in Supplementary materials: S5, the premature
deaths estimate is affected by errors in anthropogenic emissions,
GEOS-Chem simulations, use of chemical efficiency and linear
interpolation, and use of GEMM NCD + LRI modeling. Together,
these factors introduce an about 38% error (two standard devia-
tions) to our best estimates of premature deaths discussed in the
main text. Details of our methods, data and uncertainty discussions
are presented in Supplementary materials.
3. Results

3.1. Enormous cumulative loss of lives

Accumulated from 1950 to 2014, there are 185.7 million prema-
ture deaths caused by global anthropogenic PM2.5 pollution, with
an average of 2.9 million in each year (Fig. 1a). The number of
annual deaths is higher than the cumulative reported deaths (2.6
million) as of 2021-03-09 caused by COVID-19 (https://coron-
avirus.jhu.edu/map.html, last access: 2021-03-10). About 53.8 mil-
lion cumulative global deaths over 1950–2014 are contributed by
emissions in the high-income group, 82.3 million by the upper
middle group, 47.4 million by the lower middle group, and 2.2
million by the low-income group.

https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
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Fig. 1. Historical changes in anthropogenic PM2.5-related premature deaths. The cumulative premature mortality (a, in Million), cumulative per capita contribution to
premature mortality (b), and annual premature mortality in all simulation years (c, the wider bars, in Million) worldwide attributable to anthropogenic emissions in the four
individual groups. The narrower bars in (c, in Million) with lighter colors represent the individual contributions of PM2.5 pollution, population and baseline mortality rates to
the change in mortality. The changes in baseline mortality rates before 1990 is not taken into account due to data limitation.
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Fig. 1a shows that among the four groups, the high-income
group has caused the largest number of cumulative deaths until
the year of 1993, although some countries in this group started
to control anthropogenic emissions decades before 1990 ─ for
example, through implementing the Clean Air Act in the United
States in 1970 [43] and the Clean Air Act in 1956 in the United
Kingdom [44]. This result is partly because the group-based emis-
sions of high-income countries start to decline much later when
taken as a whole (e.g., around 1990 for NOx and around 1980 for
CO, as shown in Fig. S6 online). Another factor is population growth
and aging (Fig. 1c). The cumulative deaths caused by the upper
middle income group have been growing in acceleration over the
past decades and has become the highest among the four groups
since 1993. The cumulative deaths caused by the lower middle
group have also grown at an increasing rate throughout the years.
The 1950–2014 cumulative premature deaths at individual loca-
tions worldwide caused by each income group are presented in
Fig. S7 (online), which further highlights the historical, global effect
of the PM2.5 pollution.
3

Supplementary materials: S4 provides a detailed comparison of
our yearly mortality results with previous estimates based on var-
ious approaches. Results based on GEMM NCD + LRI, as done here,
are compared in Fig. S8b (online). The results in 2014 of this study
are consistent with our previous studies [18,40]. Comparing our
results to those of Burnett et al. [1] and Chowdhury et al. [27]
shows slight differences (around 20%) in global mortality. This is
because we employ an updated version of baseline mortality data
upon their studies, and estimate the premature deaths based on
PM2.5 exposure at individual grid cells rather than using the
national/regional average population weighted PM2.5

concentrations.
Fig. 1b shows the cumulative premature deaths attributed to

each person of these individual groups. This calculation removes
the effect of population size in each group (916 million for the
high-income group, 1810 million for the upper middle group,
1661 million for the lower middle group, and 319 million for the
lower middle group, averaged over 1950–2014). We first calculate
yearly deaths attributable to each source region divided by the
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population of that source region in each year, and then sum over
such a death quantity from 1950 to individual end years. A similar
approach is adopted in many previous studies to calculate the
cumulative per capita carbon dioxide emission [45–47]. The per
capita cumulative mortality contribution by the high-income
group has grown linearly until around 1990, with a subsequent
slowdown in growth. From 1950 to 2014, the high-income group
has always had the highest per capita cumulative mortality impact
among the four groups. Statistically, the number of cumulative
deaths between 1950 and 2014 attributed to every thousand resi-
dents in the high-income group reaches 60, followed by 42 attrib-
uted to the upper middle group, 26 to the lower middle group, and
6 to the low-income group.

Fig. 1c further attributes the temporal changes in annual deaths
to three driving factors (see detailed information in Supplementary
materials: S6). The factors include PM2.5 concentrations, popula-
tion (including size and age structure) and baseline mortality rates
(i.e., the death rates caused by individual diseases, for each age
range). The baseline mortality rates have been declining through-
out the years reflecting improvement in medical and living condi-
tions, and thus have had a negative effect on the number of annual
global premature deaths. This effect, however, is more than offset
by the growth in PM2.5 concentrations and the change in popula-
tion, which together have driven the continuous growth of global
annual premature mortality. The population change includes
growing size and aging (see changes in age structure in Fig. S9
online), with elder populations being less resilient against PM2.5

pollution exposure [1]. The contribution to mortality by PM2.5 con-
centrations from each of the four groups has changed substantially
over the years, reflecting the changes in their anthropogenic emis-
sions (Fig. S6 online). The PM2.5 pollution originating from the
high-income group switches from growing to declining in 1980
as a result of stringent domestic emission control. The pollution
from other three groups has grown continuously throughout the
years.

3.2. Considerable transboundary mortality

PM2.5 pollution formed from local emissions can be transported
in the atmosphere by winds to a variety of distances outside the
emission source region, which further causes nonlocal, trans-
boundary mortality [3,10,18]. Fig. 2a shows the cumulative nonlo-
cal PM2.5-related premature deaths caused by emissions in each
country group since 1950. By 2014, there are about 25.6 million
cumulative deaths caused by transboundary PM2.5, contributing
about 14% of total cumulative premature deaths. From 1950 to
2014, the annual nonlocal contribution ranges from 12% to 15%.
The percentage contribution is close to Zhang et al. [3] (about
12%) for 2007 and two HTAP studies for 2001 and 2010, after cor-
recting for the difference in source attribution method; see more
discussion in Supplementary materials: S4. Among the four groups,
the upper middle group causes the highest number of cumulative
nonlocal mortality since 1970 (Fig. 2a). This is in contrast to its sec-
ond highest contribution to total (local + nonlocal) mortality in the
years before 1993 (Fig. 1a). The cumulative nonlocal mortality
caused by the lower middle income group has been getting closer
to that by the high-income group. The low-income group has
always had the lowest nonlocal mortality impacts throughout the
years.

Each row in Fig. 2c shows the cumulative premature deaths
between 1950 and 2014 in individual receptor regions caused by
anthropogenic emissions in a source region. Here, a source or
receptor region represents a country group. Between 1950 and
2014, the upper middle group as a source region has caused about
11.2 million cumulative deaths outside its domain, including 5.4
million in the high-income group, 5.1 million in the lower middle
4

group, and 0.7 million in the low-income group. By 2014, the high-
income, lower middle and low-income groups are responsible for
6.9 million, 6.5 million and 1.1 million cumulative nonlocal prema-
ture deaths, respectively. Overall, about 13%, 14%, 14% and 49% of
cumulative deaths caused by the high-income, upper middle,
lower middle and low-income groups occur outside their own
territories.

Each column in Fig. 2c shows the 1950–2014 cumulative deaths
in each income group as a receptor region. There are about 7.0 mil-
lion, 8.5 million, 8.4 million and 1.8 million premature deaths in
the high-income, upper middle, lower middle and low-income
groups, respectively, caused by transboundary pollution originat-
ing from external source regions. The corresponding contributions
to the total mortality in each receptor region are 13%, 11%, 17% and
62%. In general, between any two among four country groups at
different affluence levels, the less affluent group bears a larger
transboundary mortality impact by the more affluent group than
the reciprocal effect. One exception is that the number of deaths
in the high-income group caused by the upper middle group is
higher than the reciprocal effect (5.4 million versus 4.3 million).

The significant amounts of transboundary mortality contributed
by and exerted upon each country group highlight the necessity of
mitigating transboundary pollution. The largest percentage contri-
butions of transboundary mortality (62% as receptor and 49% as
source) for the low-income country group mean that international
technological and financial aids are crucial to help these least cap-
able countries to protect against pollution and to reduce their pol-
lution externality.

We further demonstrate the importance to reduce transbound-
ary pollution by contrasting the estimated historical mortality
change caused by the high-income group against a hypothetical
scenario which assumes PM2.5 concentrations attributable to the
high-income group to have kept constant since 1980, i.e., with no
effective emission control in the high-income group to reduce
PM2.5 concentrations. Fig. S10 (online) shows that the hypothetical
scenario leads to much more deaths than our estimated historical
pathway, with a 1980–2014 cumulative difference of about 9.9
million, including about 8.1 million more local deaths and about
1.8 million more nonlocal deaths. By comparison, during 1980–
2014, the cumulative deaths in the high-income group caused by
transboundary pollution from all other groups are about 4.8 mil-
lion. This implies that about 59% of avoided local deaths (8.1 mil-
lion) due to emission control in the high-income group over
1980–2014 might have been offset by transboundary pollution.
The substantial transboundary mortality effect calls for interna-
tionally concerted action to reduce emissions for local and nonlocal
health benefits.
3.3. Inequality in transboundary mortality

Contemporary history has clearly not been free of anthro-
pogenic pollution and its associated mortality. One would argue
that to achieve health equality, in the absence of other factors,
every person in individual regions should cause (and bear) the
same number of transboundary premature deaths associated with
transboundary anthropogenic air pollution.

Based on such an equality argument, Fig. 2b shows the cumula-
tive nonlocal mortality attributable to each person of each country
group, by dividing the nonlocal deaths caused by that group by its
population on a yearly basis and then summing up the yearly
results from 1950 to individual end years. Between 1950 and any
end year, the higher the affluence level of a group is, the severer
the cumulative transboundary mortality caused by each person
of that group is. Quantitatively, the 1950–2014 cumulative
transboundary deaths caused by every thousand residents in the
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high-income, upper middle, lower middle and low-income groups
are about 7.5, 5.9, 4.0 and 3.0 respectively.

Each cell in Fig. 2d shows the 1950–2014 cumulative premature
deaths occurring in a receptor region caused by every thousand
residents in a source region. The mortality impact of the high-
income group on the upper middle group is higher than the recip-
rocal impact (4.8 versus 2.9 deaths). Similar inequality exists
between the high-income and lower middle groups (2.5 versus
1.0 deaths), between the upper middle and lower middle groups
(2.6 versus 2.5), between the upper middle and low-income group
(0.4 versus 0.2). Although the transboundary effect (on a per thou-
sand residents’ basis) of the low-income group on the lower middle
group is larger than the reciprocal effect (2.5 versus 0.5; Fig. 2d),
the global total transboundary deaths caused by the low-income
group (3.0; Fig. 2b) is still the lowest among the four groups. Over-
all, the cross-regional inequality shown in Fig. 2b, d can be catego-
rized on a per capita basis as ‘‘the richer exert severer health
externality”.

Another measure of cross-regional inequality can be taken by
contrasting the annual nonlocal mortality caused by each person
5

of a group (X) against the annual transboundary mortality risk
exerted upon each person of that group (Y, which is calculated as
the total deaths in that group caused by foreign emissions divided
by the number of population in that group). A Transboundary Mor-
tality Equality Ratio (TMER) can be further defined as the ratio of Y
to X. A value of TMER lower than 1 (i.e., Y < X; located in light pur-
ple area) means that the group is a net source of transboundary
mortality, and that the inequality works to the advantage of that
group; and TMER > 1 means a net receptor. Fig. 3 tracks the
year-to-year evolution of Y contrasting X since 1950. Fig. 3 shows
that the high-income group has shifted from being a net source
to being a net receptor since 1982. In 2014, the TMER of the
high-income group reaches 1.2, that is, the transboundary mortal-
ity burden exerted upon each of its residents is 1.2 times as severe
as the transboundary burden each of its residents exerts upon
other income groups. The upper middle group has become a net
source since 1971, and by 2014, its TMER reaches as low as 0.6.
The lower middle group has remained a net receptor of trans-
boundary mortality during the past decades, with a TMER of about
1.3 in 2014. The low-income group has also remained a net



Fig. 3. Health inequality reflected in each person’s roles as part of a source versus a
receptor region. The x-axis shows the nonlocal premature deaths caused by each
resident of a specific region; while the y-axis shows that region’s premature death
rate caused by its foreign sources, i.e., that region’s premature deaths due to foreign
sources divided by that region’s population. The circles denote results for individual
years, with the lightest colors representing 1950 and the darkest colors represent-
ing 2014. The colors differentiate the income groups: high-income (red), upper
middle (orange), lower middle (green), and low-income (blue). The circles with
thick black coats denote the average situations over 1950–2014.
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receptor since 1950, and its TMER has been growing relatively con-
stantly and is larger than that of other three groups in most years.
This inequality can be categorized as ‘‘the poorest bears the worst
net health externality”.
4. Discussion and conclusions

In addition to methodological uncertainties described in
Supplementary materials: S5, this study is subject to a few limita-
tions. First, the CEDS [12] + MEIC [36–39] emission inventory used
heremay contain larger uncertainties in the early years. To estimate
such errors, we use two other widely used global anthropogenic
emission inventories (EDGAR v5.0 [48] and Peking University
Inventory [49–53]), combined with the chemical efficiency data
and satellite-based correction, to conduct additional estimates of
historical anthropogenic PM2.5 concentrations and associated
deaths. As shown in Fig. S11 (online), the mortality results based
on EDGAR and Peking University Inventory are similar to those
based on CEDS + MEIC. Second, the baseline mortality rate data
are not available prior to 1990. Fixing baseline mortality rates
before 1990 would introduce a minor underestimate of mortality
over previous years (Fig. S5 online) but does not affect our conclu-
sion. Third, although the toxicity of individual PM2.5 components
may differ, we assume the same toxicity for all components, consis-
tent with previous studies [3,18,19,40] andWorld Health Organiza-
tion assessments [54]. Fourth, anthropogenic emissions of each
group considered here are associated with its domestic production
and are physically released above its territory. They do not include
the emissions released in other regions associated with production
to supply that group’s consumption via trade [3,11]. The trans-
boundary impacts by each source region would be enhanced had
the effect of trade been included [3,11]. Fifth, our simulation of
atmospheric chemistry and transport is based on GEOS-Chem,
and further multi-model studies [16,17] will help quantify the
intrinsic model uncertainty related to transboundary pollution.
Sixth, our analysis is focused on four aggregated income groups to
provide macroscopic insight of transboundary pollution and
6

embedded inequality. It could be complemented with further stud-
ies at national, sub-national and local scales, to reveal potential
scale dependence of the significance of transboundary pollution
and inequality. Seventh, the period considered in this study is from
1950 to 2014 when there are significant changes in magnitude and
distribution of anthropogenic emissions worldwide. If a longer per-
iod is considered (e.g., since 1900), the dominance of high-income
group’s contribution to premature deaths would not be influenced,
since anthropogenic emissions from high-income group are domi-
nant for majority of pollutants before 1950 [12]. However, some
turning points (such as the intersection between high-income and
upper middle income groups in Fig. 1a) would be postponed.

Overall, this study shows enormous cumulative loss of lives
from 1950 to 2014 as a result of transboundary PM2.5 pollution
contributed by four country groups at different affluence levels.
The evolution of transboundary pollution is accompanied by a seri-
ous cross-regional health inequality problem, with the poorest
country group bearing the worst net health externality after con-
sidering transboundary pollution produced by versus exerted upon
each resident of each group. The upper middle group has become
the leading net source of transboundary mortality since decades
ago. Recently, China has substantially reduced its emissions and
PM2.5 pollution [8,14], whereas many other middle-income coun-
tries still suffer from continuous emission increases (except for
the disruption by COVID-19) [13]. In the future, the geographical
pattern of emissions will continue to change along with the eco-
nomic globalization, with production and emissions mostly likely
moved to less affluent tropical countries [55], in part accelerated
by multi-lateral agreements such as the Belt and Road Initiative
(BRI) [56] and the Regional Comprehensive Economic Partnership
(RCEP) [57]. It is crucial that environmental cooperation be
enhanced to achieve mutual benefits for regions under develop-
ment and others susceptible to potential transboundary pollution
from these developing regions. For example, environmental
co-benefits could be made a core, mandate measure of the success-
fulness of multi-lateral collaborations; and technological and
financial support to less affluent parties could be enforced and
enhanced through the mechanism laid out in the Paris Agreement
[58], especially given the health inequality in historical trans-
boundary pollution to the disadvantage of these regions. To this
end, our study offers important insight to historical lessens on
transboundary pollution and cross-regional health equality, upon
which collaborative economic-environmental strategy could be
established to ensure sustainable development.
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