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H I G H L I G H T S

• Spatiotemporal changes of central heating CO2 emissions at city level are shown.

• A high-resolution gridded inventory of heating-related CO2 emissions is built.

• The satellite nighttime light data is used to downscale the city level emissions.

• Differences in CO2 emissions between urban and non-urban areas are discussed.
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A B S T R A C T

Energy consumption from central heating has rapidly increased in the cities of the North China Plain (NCP). The
increasing use of natural gas in the central heating supply system may have altered the spatial and temporal
patterns of CO2 emissions from central heating, yet the quantitative impacts are poorly understood. Here we
detect the spatio-temporal dynamics of CO2 emissions of central heating from 2012 to 2016 at the prefectural-
city level in the NCP region, by using the satellite NPP-VIIRS nighttime light data and a panel regression model
to estimate CO2 emissions on a 5× 5 km2 grid. We find that despite a slight decrease (2%) in 2014 under the
“Natural Gas Utilization Policy”, CO2 emissions continued to grow. Between 2012 and 2016, CO2 emissions from
central heating in the NCP increased from 106 to 121 Tg, although CO2 emissions declined by 12% in Beijing due
to the increasing contribution of natural gas boilers. The gridded CO2 emissions map shows that over 2012–2016
coal burning is the main driving force of CO2 emissions in both urban and non-urban regions, despite the
increasing fraction of gas-based heating. Our results contribute to city-level policymaking on carbon reduction
and climate change mitigation. The high-resolution gridded CO2 emissions can also be applied in physical
models to facilitate carbon cycle studies.

1. Introduction

China is the largest emitter of anthropogenic carbon dioxide (CO2)
in the world, and in 2015 China’s total CO2 emissions reached ap-
proximately 9265 teragrams (Tg) [1], which contributes about 30% of
global emissions in 2015 [2]. In accordance with the Paris Agreement,

China has promised to peak its CO2 emissions by 2030, among other
actions. A prerequisite of achieving these mitigation goals is detailed
accounting and verification of emissions from different sectors. In the
past, the greatest emphasis has been placed on coal-fired power plants,
because they emit the most CO2 and their emissions are well-known
[1,3,4]. However, another important consumer of coal and emitter of
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CO2 is the residential heating supply.
This study focuses on CO2 emissions from the central heating supply

system, namely the heating supply by central generation technologies
that is distributed to end-users, during the cold season (120–180 days
annually) in the cities of northern China [5]. Over the last five decades,
central/district heating has been widely used in many regions. Russia
has the oldest but relatively inefficient central heating system in the
world [6]. The Scandinavian countries have the best technologies of
using sustainable heating sources in their centralized heating system
network since 1970s [7]. By 2015, Poland and Germany owned the
largest district heating grids in Central and Western Europe [8]. China
has very fast development of the central heating supply network since
1998 [9]. Up to 2016, approximately 87% of the central heating in
China was produced by coal burning [10], which makes central heating
supply in China both energy and carbon intensive. However, this con-
tributing sector is much more poorly characterized: the quantities of
coal and other fuels burned is not well known. Statistics on residential
energy use are unreliable, leading to unpredictive uncertainties on the
estimation of China’s total CO2 emission [11]. Coal burning from cen-
tral heating supply also means a substantial amount of air pollutant
emissions in the vicinity of residential dwellings [12,13], threatening
the public health. In January and February 2010, residential heating
and cooking in Beijing-Tianjin-Hebei contributed to 28–44% of ambient
PM2.5 concentrations in the regions [14].

The North China Plain region (NCP, including Beijing-Tianjin-
Hebei, Henan, and Shandong provinces) is one of the most densely
populated regions in the world, and the total CO2 emissions of NCP
accounted for 25% of China’s total emissions in 2015 [1]. CO2 emis-
sions for the central heating sector in the NCP was approximately 149
Tg in 2015, which was approximately equivalent to the total CO2

emissions in the Netherlands (156 Tg) [15,16]. To save energy and
reduce air pollution from residential heating, the Chinese government
has launched the clean heating policy in the “2+26” cities, 24 of
which are located in the NCP. The policy is expected to be implemented
in the whole country at a later stage. Replacing coal with gas represents
a major part of such a policy; for example, in 2012 the National De-
velopment and Reform Commission of China (NDRC) launched the
“Natural Gas Utilization Policy” [17]. From 2000 to 2016, China’s total
natural gas consumption increased about seven times [10]. The devel-
opment of gas has also been beneficial for controlling CO2 emissions
from central heating, because the CO2 emission factor of gas boilers is
approximately half of that of coal-based boilers [3]. The effect of in-
creasing penetration of natural gas boilers, together with increasing
energy demands [10], has meant complex changes in the spatial and
temporal pattern of CO2 emissions. However, the quantitative in-
formation about such changes is poorly understood, prohibiting a de-
tailed understanding of the carbon reduction co-benefit of natural gas
development on the city and smaller scales.

Understanding of emissions at the city and gridded levels is critical
for spatially targeted carbon accounting and mitigation policymaking
[18]. Previous studies of emissions of CO2 and other greenhouse gases
(GHGs) mostly focused on national- or provincial-level emissions
[4,19,20,21], and most of the city-level emissions provided only total

emissions [22] or some selected sectors [23–25]. Few studies have
specifically studied GHGs emissions from residential heating supply,
particularly on the city-level and as a gridded dataset. Kennedy et al.
[26] calculated emissions from seven sectors, although they did not
separate the heating supply from power and heating generation. Shan
et al. [18] estimated CO2 emissions for 182 Chinese cities, and then
decomposed the results into 46 socioeconomic sectors, including the
heating supply sector by using the ‘energy balance tables’ in the China
energy statistical system. Their research covered about half of the cities
located in the NCP and did not analyze the heating supply sector in
detail. Liu et al. [27] calculated the energy-related GHG emissions from
four megacities in China, and they found that emissions from heat
supply contributed to about 9% of total emissions in Beijing and Tianjin
during 1995–2009. However, Liu et al. did not separate central heating
from the total of industrial heat supply and residential central heating.
Pang et al. [28] measured the emission reduction effects achieved by
the use of gas instead of coal for CO2 and six major air pollutants in 15
heating cities of China in 2010, but they did not show the spatial and
interannual dynamics of the emission changes. Du et al. [15] calculated
the CO2 emissions from central heating on a provincial basis, and they
found that the emissions in 15 provinces increased from 189 to 319 Tg
CO2 between 2006 and 2015, and that higher CO2 emissions were
generated in regions with larger central heating coverage and heating
area.

Satellite-based nighttime light (NTL) intensity data have been used
as a proxy to estimate the CO2 emissions on a regional scale [29], in the
absence of direct data to establish a high-resolution gridded inventory.
Doll and Pachauri [30] employed the DMSP-OLS NTL data to map the
total CO2 emission distribution at the national level and found that the
NTL intensity in more than 90% of countries were well matched with
their CO2 emissions. Also, Ghosh et al. [31] and Oda and Maksyutov
[32] built a global fossil-fuel CO2 emission inventory based on the NTL
data. For China, Meng et al. [33] developed a top-down method to map
the CO2 emission distribution at an urban scale. Meanwhile, the re-
lationship between economic development indicators and NTL-based
CO2 emissions in Chinese cities has been studied [34]. Su et al. [35]
proposed a normalized method to calculate CO2 emissions at a city level
in China from 1992 to 2010. Shi et al. [36] analyzed the spatio-tem-
poral dynamics of CO2 emissions in China on the national, regional and
urban agglomeration scales. Zhang et al. [37] applied the DMSP-OLS
and NPP-VIIRS nighttime light data to estimate the CO2 emissions from
energy consumption in China at the provincial and prefectural-city le-
vels.

Spatially gridded satellite NTL data, aided by panel regression
models, can offer a feasible way to estimating the CO2 emissions from
central heating on a gridded basis. This is because gridded data of
nighttime light can reflect the exact locations and extents of human
settlements [32], offering a useful tool to estimate population density,
urban population, and urban built-up area [29,38–40]. Moreover,
central heating is closely related to the distribution of the urban po-
pulation and urban built-up area. For example, in Beijing there were
over 5,000 coal-fired and 1,000 gas-fired space heating boilers sur-
rounding the populated areas in 2014 [41]. Despite their usefulness,

Nomenclature

CO2 carbon dioxide
NCP North China Plain
NTL nighttime light
Tg Teragrams
NDRC the National Development and Reform Commission of

China
GHGs greenhouse gases
TPPs thermal power plants

IPCC the Intergovernmental Panel on Climate Change
MOUHRDthe Ministry of Housing and Urban-Rural Development of

the People's Republic of China
DMSP-OLS Defense Meteorological Satellite Program’s Operational

Linescan System
NOAA/NGDC National Oceanic and Atmospheric Administration’s

National Geophysical Data Center
VIIRS Visible Infrared Imaging Radiometer Suite
NPP National Polar-orbiting Partnership
AIC Akaike info criterion
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satellite NTL data have not been used to estimate CO2 emissions from
central heating and their changes driven by the energy structure up-
grade, i.e., from coal to gas.

To estimate CO2 emissions from coal usage and the replacement by
gas of central heating supply, we use gridded satellite NTL data, to-
gether with a panel regression model, to estimate annual CO2 emissions
from central heating in the NCP over 2012–2016 at high spatial re-
solution (5× 5 km2). As such, we aim to assess the spatiotemporal
dynamics of CO2 emissions from central heating due to the recent
changes in energy structure from coal to gas in the NCP region, and
contrast the changes in urban and non-urban areas. We first build a
bottom-up emission inventory of CO2 emissions for central heating on
the prefecture-city level in the NCP region. We then use the NTL data to
project the city-level emissions data on a 5×5 km2 grid. Finally, we
analyze the effects of coal-to-gas transformation on the spatial and
temporal patterns of CO2 emissions. Our results contribute to cover the
current research gaps on estimating the gridded carbon emissions from
central heating, improving the understanding of the changing fuel
structure, and reducing the uncertainties in CO2 emissions in China and
other developing countries. The high-resolution gridded CO2 emissions
can also be applied in the physical models to facilitate carbon cycle
studies [32,42].

2. Methodology and data

2.1. Study area

The North China Plain contributes about 25% of the total popula-
tion of China [43]. Fig. 1 shows the North China Plain, which contains
Beijing, Tianjin, Hebei (together called JJJ, consuming about 12% of
energy in China [43]), Henan, and Shandong (the two most highly
populated provinces in northern China). Coal consumption in the above
mentioned five provinces together accounts for approximately 24% of
the total national coal consumption during 2012–2016 [44]. Most areas
in these provinces are located in the north of the Qin Mountain-Huai
River line that distinguishes the northern areas with accessible central
heating from the southern areas without (Fig. 1, green triangles and
blue line). We selected 46 prefecture-level cities and two province-level
municipalities (Beijing and Tianjin) in the NCP. Zhoukou and Xinyang
in Henan Province, which sit on the Qin Mountain-Huai River

boundary, were excluded due to lack of central heating supply. We
separated urban from non-urban areas in Fig. 1, according to the maps
of urban and non-urban area which are provided by the Beijing City Lab
Database [45].

2.2. Method to estimate CO2 emissions from central heating based on NTL
data

Central heating is supplied by three main methods: coal-fired boilers
for heating, coal-fired heat and electricity cogeneration thermal power
plants (TPPs), and gas-fired boilers for heating [10]. Hereafter the first
two methods are combined as coal-based supply for simplicity.

Fig. 2 shows the four main steps used to estimate the spatiotemporal
dynamics of CO2 emissions from the central heating supply system in
the NCP region. First, CO2 emissions from central heating at the pre-
fecture-city level of five provincial regions in the NCP over 2012–2016
were calculated based on a bottom-up approach. Three types of CO2

emissions from central heating supply system were included: coal-fired
boilers, gas-fired boilers and TPPs. Second, the prefectural-city level
nighttime light intensity during the heating period was summed from
the gridded monthly mean NPP-VIIRS nighttime light data. Third, a
panel regression model was used to link the NTL data to heating-related
CO2 emissions at the prefecture-city level, and then to allocate the
prefectural-level CO2 emissions on the high-resolution grid by using
NTL as a proxy at each grid cell. Finally, the spatiotemporal dynamics
of gridded CO2 emissions from central heating over 2012–2016 were
analyzed.

2.2.1. Calculating CO2 emissions from central heating based on a bottom-up
method

CO2 emissions from central heating are calculated for the coal-based
and gas-based heating systems separately. Our calculation followed the
method used by the Intergovernmental Panel on Climate Change (IPCC)
[46]. The annual CO2 emissions from different boilers (f) in year t,
denoted by EMf,t, were estimated as the product of the annual central
heating related energy consumption (ECf,t) and the CO2 emission factor
(EFf). Thus, the total CO2 emissions from central heating in year t were
estimated as follows:

Fig. 1. Provinces (left) and prefectural-level cities (right) studied here. The left panel also separates the urban (in red) and non-urban areas (in light yellow). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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∑=EM EC EF·t
f

f t f,
(1)

CO2 emission factors for different boiler types were taken from Liu
et al. [3], which suggested 96.51 gCO2/MJ for raw coal and 56.17
gCO2/MJ for natural gas. The same values were used by Du et al. [15].
The annual coal consumption data (unit: MJ) for coal-based boilers
(including heating only and cogeneration TPP) from 2012 to 2016 on a
prefecture city level were collected from the “China Urban Construction
Statistical Yearbook” [10] published by the Ministry of Housing and
Urban-Rural Development of the People's Republic of China
(MOUHRD). The natural gas consumption data for gas-based boilers on
a prefecture city level were collected from the “China Urban-rural
Construction Statistical Yearbook” [47] published by the MOUHRD.

2.2.2. Nighttime light data
Gridded nighttime light intensity reflects the general intensity of

human activities, and it has been widely used to estimate population,
built-up area, economic development, energy consumption, and CO2

emissions [48–50]. In many previous studies, the gridded NTL data
were taken from annual datasets of the Defense Meteorological Satellite
Program’s Operational Linescan System (DMSP-OLS) archived by the
National Oceanic and Atmospheric Administration’s National Geophy-
sical Data Center (NOAA/NGDC) of the United States with the spatial
resolution of 1 km. In this study, we used a much-improved gridded
NTL dataset on a monthly basis over 2012–2016 based on the day/night
band of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard
the Suomi National Polar-orbiting Partnership (NPP) satellite. Com-
pared to the previous DMSP-OLS NTL data, the NPP-VIIRS NTL data
have a finer spatial resolution (15 arc-second, about 500m) and much
less saturation problem due to the wider radiometric detection range
[51]. Additionally, the monthly NPP-VIIRS NTL dataset allows the ex-
traction of seasonal information about human activities.

The NPP-VIIRS monthly NTL data over 2012–2016 (unit: nano-
W cm−2 sr−1) are available from NOAA/NGDC (https://ngdc.noaa.
gov/eog/viirs/download_dnb_composites.html). We only used the
wintertime (November to March) NTL data, to be consistent with the
heating period. For our purposes, only lights from cities, towns, and
other sites with persistent lighting were used. We removed episodic
events (fires, gas flares, volcanoes or aurora) from the NTL dataset
using two additional datasets that have been specifically calibrated to
remove such events, including the official 1-year NPP-VIIRS NTL
composite dataset for 2015 and the DMSP-OLS yearly composite data
for 2012–2013 (available at https://ngdc.noaa.gov/eog/dmsp/
downloadV4composites.html) [52]. After excluding the episodic
events, there still existed a few outliers that are probably caused by the
stable lights from ship light in the coastal, and from fires of oil or gas
wells in the study area in the NTL intensity data to be removed [51].
Thus we used the maximum intensity in the megacity of Beijing and
Shanghai for each year as the threshold, above which the intensity in
any location (satellite pixel) was assumed to be unrealistic and was
adjusted to the largest intensity value from its eight immediate
neighbor pixels. Subsequently, the (500m resolution) gridded NTL
dataset was re-mapped to the Albers Equal Area Conic projection. To
obtain the city-level intensity, we summed up all grid cells of NTL data
within the administrative boundaries of each city by ArcGIS 10.3
software. We further converted and aggregated the 500m resolution

Fig. 2. Framework to estimate CO2 emissions and changes due to gas development.

Fig. 3. Total CO2 emissions (TgCO2) from central heating at the provincial level
by energy type from 2012 to 2016.
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NTL data to a 5× 5 km2 grid, to be consistent with the resolution of the
gridded CO2 emissions.

2.2.3. Linking NTL data to energy consumption and CO2 emissions from
central heating

We used a panel regression model to estimate CO2 emissions over
2012–2016 from the NTL data on a gridded basis. The model assumed
that the NTL data are linearly correlated to CO2 emissions on a pre-
fecture city level, albeit with some random uncertainty, and that such a
relationship can be applied to all grid cells (5× 5 km2) within that city.
For a given city, the linear relationship between the city-level NTL data
and corresponding heating-related CO2 emissions can be established as
follows:

= ∗ + +y a NTL b ε (2)

where y is the bottom-up CO2 emissions from central heating at a city,
NTL the sum of nighttime light intensity within that city, a the slope, b

the intercept, and ε the random error of the regression model.
Panel regression models have been widely used to estimate CO2

emissions, and these models perform effectively across spatial and
temporal dimensions [33,36]. Since the relationship between CO2

emissions and NTL may vary from one city to another, due to differ-
ences in the type of energy consumption and other factors, we further
introduced a city-specific variable βi to improve the regression:

= ∗ + + +y a NTL β εbi t i t i i t, , , (3)

where the subscript t denotes the year (2012–2016), i denotes the city,
and βi is essentially a city-specific adjustment to the intercept of the
regression model. Note that a and b are independent of the cities and
years.

The bottom-up city-level total (coal+ gas) CO2 emissions in Section
2.2.1 were used to establish the regression model. The statistical T-test
rejects the null hypothesis of =a 0. Such a statistical relationship was
then applied to all grid cells of the cities. For each year and city, we
used the ratio of coal-related and gas-related emissions at the city level
(from Section 2.2.1) to grid cells of that city to obtain gridded coal-
related and gas-related emissions, separately, in that year.

Applying the linear model in Eq. (3) to estimate (predict) gridded
CO2 emissions means that, for a city, the total amount of emissions
(from coal and gas burning) summed over the grid cells within its ad-
ministrative boundaries may not be exactly equal to the bottom-up
emissions calculated in Section 2.2.1. Such emission differences are
generally small, as further discussed in Section 3.5. Nevertheless, for
each year, we further used Eq. (4) to adjust the gridded CO2 emissions,
such that the total of gridded emissions within the boundaries of any
city fully matches the emission value of that city from the bottom-up
calculation:

Fig. 4. City-level CO2 emissions from central heating in different years (a–e), as well as (f) the change from 2012 to 2016 (f). Two cities, Xinyang and Zhoukou, sit on
the Qin Mountain-Huai River boundary with no central heating; their emissions are shown as zero in all panels.

Table 1
Results of the panel regression model with city fixed effects.

Coefficient Std. Error t-Statistic p-value

Intercept 1642.315 418.901 3.921 0.000
Slope 0.014 0.006 2.134 0.034

Model adjusted R2 0.976
F-statistic 356.061
Prob (F-statistic) 0.000
Akaike info criterion 15.747
Cross-section F (effects test) 71.238 (p= 0.000)
Cross-section Chi-square (effects

test)
627.286 (p=0.000)
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where EEg denotes the final corrected CO2 emissions in a specific grid
cell within a city i, SEg the predicted CO2 emissions of that grid cell
from Eq. (3), SEi the predicted CO2 emissions of that city from Eq. (3),
and EEi the bottom-up emissions of that city from Section 2.2.1 (i.e., EM
in Eq. (1)).

3. Results

3.1. Bottom-up CO2 emissions from central heating from 2012 to 2016

Fig. 3 shows CO2 emissions from central heating in each province of
the NCP, as calculated from the bottom-up approach in Section 2.2.1.
Between 2012 and 2016, the total emissions in the NCP increase by
14.6%, from 106 to 121 Tg. Among the five provinces, Shandong and
Beijing have the largest emissions during 2012–2016 due to their high
energy consumption of about 0.38–0.45 and 0.36–0.38×109 GJ, re-
spectively.

Fig. 3 also separates the contributions from coal-based (yellow bars)
and gas-based (blue bars) heating systems. From 2012 to 2016, gas-
based CO2 emissions in the NCP grew dramatically from 1 to 14 Tg, and
coal-based emissions increased slightly from 104 to 107 Tg. Meanwhile,
energy consumption in the NCP by coal-based boilers grew from 10.8 to
11.1×109 GJ and by gas-based boilers from 0.3 to 2.5× 109 GJ. These
changes reflect the fact that many cities in the NCP region have been
undergoing strategic heating supply reform, especially through the
development of gas-fired central heating.

Nonetheless, coal burning still plays a dominant role in CO2 emis-
sions, contributing 88.5–98.6% of heating-related emissions in the NCP
as a whole. Beijing has undergone the most rapid replacement of coal-
by gas-based central heating, and the share of gas-related emissions in

Beijing increased from 1.9% in 2012 to 31.2% in 2016 (Fig. 3). In
Hebei, Shandong and Henan, gas burning contributes much less (below
10%) to total CO2 emissions from central heating, despite their in-
creasing shares throughout the years. In these three provinces, coal-
related emissions continue to grow over the years, as driven by the
increasing energy need for central heating.

Fig. 4a-e shows the city-level, bottom-up, annual CO2 emissions
from central heating from 2012 to 2016. Emissions exceed 2000 Gg in
many cities in the JJJ region; and Beijing, Tianjin, Shijiazhuang (capital
of Hebei) and Qingdao (in Shandong) have the highest CO2 emissions
due to their large energy consumption and coal use for central heating.
Fig. 4f further shows that annual emissions increased from 2012 to
2016 in most cities, with Shijiazhuang and Jinan (capital of Shandong)
having the largest emission enhancements (more than 3500 Gg). In
contrast, annual emissions in Beijing decreased by 4060 Gg (about
12%) due to the implementation of the “Beijing Clean Air Action Plan
2013–2017”, with strong actions since 2013 to eliminate coal-fired
boilers and increase the proportion of cleaner energy-based heating
supply systems.

3.2. Panel data regression results

The correlation analysis shows that the NTL data and heating-re-
lated total (coal+ gas) CO2 emissions are highly correlated at the city
level across the 48 cities over 2012–2016 (R2=0.796, n=240), sug-
gesting the appropriateness of building the panel regression model
between NTL and CO2 emissions.

Eq. (5) presents the results of the city-level panel data regression
between NTL (predictor) and total CO2 emissions (predicted). Table 1
shows that both the intercept and the slope of the regression are sta-
tistically significant at the 95% confidence interval (p-value < 0.05)
with the t-statistics of 3.921 and 2.134. The redundant fixed effects tests
for the cross-section fixed effects also show a p-value of 0.000, further

Fig. 5. Annual gridded CO2 emissions from central heating (coal+ gas) in the NCP in different years (a–e), as well as the changes from 2012 to 2016 (f).
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validating the regression model used in this paper. The model-adjusted
R2 reaches 0.976. Other statistical results of the regression model, in-
cluding the F-test and Akaike info criterion (AIC), also verify the ap-
plicability of the panel regression model.

= ∗ + +y NTL β0.014 1642.315i i i (5)

3.3. Spatiotemporal dynamics of gridded CO2 emissions from central
heating

3.3.1. Total gridded CO2 emissions from coal and gas burning
Fig. 5(a)–(e) illustrates the spatial distribution of gridded annual

CO2 emissions from central heating in different years at a resolution of
5× 5 km2. Grids with high CO2 emissions (larger than 1.6 Gg CO2) are
found in the urban centers of large cities like Beijing, Tianjin, Shi-
jiazhuang (capital of Hebei), Tangshan (in Hebei), Qingdao (in Shan-
dong), and Yantai (in Shandong), due to dense urban population and
extensive central heating services.

Fig. 5 shows that from 2012 to 2016, CO2 emissions declined in the
urban areas of Beijing but increased in its suburban areas. This likely
reflects the migration of residents from the city center to the suburban
areas to avoid the high and increasing living costs in the urban center. A
similar (although weaker) spatial change occurs in the other megacity,
Tianjin. In many other cities, emissions from central heating grow in
both urban centers and suburban areas (in yellow and red color, ac-
counting for more than 50% of the grid cells), because distributed space
heating has been increasingly substituted by central heating over the
past few years, and that heating supply has become more abundant.

3.3.2. Coal-related gridded CO2 emissions
Fig. 6(a)–(d) shows the year-on-year changes in CO2 emissions from

the coal-based heating system (coal-fired boilers and cogeneration
TPPs) on the high-resolution grid. Changes in coal use are the main
driving force for changing CO2 emissions in suburban and less devel-
oped areas. From 2012 to 2016, CO2 emissions from coal burning in-
creased in most areas of South Hebei, North Henan and West Shandong.
From 2015 to 2016, grid cells from Jinan and Tai’An (both in Shan-
dong) experienced notable emission enhancements (large than 30 Gg),
indicating their intensive development of coal-based central heating.
Large and often increasing amounts of coal-related emissions in the
cities of Hebei, Shandong and Henan provinces throughout the years
reflect the fact that coal is still the dominant energy source in these
cities.

The green colors in Fig. 6a–d show that from 2012 to 2016, coal-
related emissions declined in the urban areas of the two megacities
(Beijing and Tianjin) and three provincial capital cities (Shijiazhuang,
Zhengzhou and Jinan). The decline reflects the transformation from
coal- to gas-based boilers, as further shown in Fig. 7. Coal-related
emissions in most grid cells of cities in Qingdao, Tai’An, Laiwu (Shan-
dong Province) and Kaifeng, Zhumadian, Shangqiu, Pingdingshan
(Henan Province) decreased by 2–19% during the study period.

3.3.3. Gas-related gridded CO2 emissions
Fig. 7 a-d presents the year-on-year changes of gridded CO2 emis-

sions from gas-based central heating in the NCP region. The interannual
changes are relatively small, compared to the changes in coal-related
emissions (Fig. 6), due to the relatively small fractions of central

Fig. 6. The year-on-year changes in CO2 emissions from coal-based central heating in the NCP.
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Fig. 7. The year-on-year changes in CO2 emissions from gas-based central heating in the NCP region.

Fig. 8. Interannual changes in CO2 emissions due to urban heating in the five provincial regions. The growth rate is defined as year-on-year change in emissions, e.g.,
[emissions in 2013− emissions in 2012]/[emissiions in 2012].
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heating supply from gas-fired boilers. Many cities have not used gas-
based central heating, due to abundant coal reserves and the higher cost
of gas-supplied heating, leading to essentially no changes in emissions
(white color in Fig. 7).

The largest magnitude of change in gas-related emissions occurs in
Beijing from 2013 to 2014, where the emissions increased significantly
(Fig. 7b), concurrent with the large decline in coal-related emissions
(Fig. 6b). The contrasting changes in gas- and coal-related emissions
reflect the rapid switch from coal- to gas-based heating in the first year
of implementing the “Beijing Clean Air Action Plan 2013–2017” and
that Beijing is the first major city to implement the “Natural Gas Uti-
lization Policy” in China. From 2013 to 2014, the gas-related (coal-
related) emissions also increase (decline) in Tianjin (Figs. 6b and 7b).
From 2015 to 2016, gas-related emissions in Beijing exhibit mixed
changes among its districts, due to the influence of the shortage in gas
supply [53,54]. Fig. 7 also shows that cities in other provinces, in-
cluding Shijiazhuang, Jinan, Zibo, Heze and Zhengzhou also exhibit
emission growth (large covered area with yellow color in Fig. 7a–d)
from gas-fired boilers.

3.4. Interannual variation of CO2 emissions: Urban versus non-urban areas

We further contrast the interannual changes in CO2 emissions be-
tween urban (Fig. 8) and non-urban (Fig. 9) heating in each province,
based on the gridded emission inventory. The results for urban heating
in Fig. 8 show that from 2012 to 2016, coal-related CO2 emissions in
urban Beijing and Tianjin decreased by 41% and 11%, respectively, in
contrast to the growth for urban Hebei, Henan and Shandong. In all

provinces, gas-related emissions grew much faster than coal-related
emissions did (red versus blue lines). Thus, from 2012 to 2016 the
shares of coal-related emissions in total (coal+ gas) emissions de-
creased largely for urban Beijing (by 30%) and urban Tianjin (by 16%)
and slightly for urban heating in Hebei, Shandong and Henan (from
98–99% in 2012 to 96–97% in 2016).

The results for non-urban heating in Fig. 9 show that the coal-re-
lated emissions (blue bars) in Hebei, Shandong and Henan kept in-
creasing from 2012 to 2016, except for a slight decrease (by −1%) in
Shandong between 2013 and 2014. The gas-related emissions increased
constantly, similar to the growth pattern in urban heating. The shares of
coal-related emissions declined in all provinces.

Contrasting Figs. 8 and 9 shows that in Beijing and Tianjin, the total
(gas+ coal) CO2 emissions are mainly from urban heating consumption
(60–67%), due to the large urban population in these two cities, al-
though the difference between urban and non-urban heating is de-
clining throughout the years. In Hebei, Henan and Shandong provinces,
CO2 emissions are mainly from non-urban heating consumption
(56–69%).

Contrasting Figs. 8 and 9 further shows that for gas-related CO2

emissions (red bars), the contribution of urban heating was approxi-
mately 1.6–2.0 times that of non-urban heating in Beijing and Tianjin.
In contrast, gas-related emissions for urban heating were only 50–80%
of the emissions for non-urban heating in Hebei, Shandong and Henan.
In these less developed provinces of Hebei, Shandong and Henan, non-
urban households are dominant, so is their heating need.

Fig. 9. Interannual changes in CO2 emissions due to non-urban heating in the five provincial regions. The growth rate is defined as year-on-year change in emissions,
e.g., [emissions in 2013− emissions in 2012]/[emissiions in 2012].

Table 2
Comparison of emissions (TgCO2) by different approaches at the provincial level.

Our bottom-up inventory: Mean (95% CI) from Monte-Carlo simulations. Provincial emissions are summed from city-level emissions Inventory from Du, Wang
[15]

Year 2012 2013 2014 2015 2016 2015
Beijing 34(31,37) 32(30,35) 29(27,31) 29(27,31) 30(28,32) 48
Tianjin 11(11,12) 12(11,13) 12(11,13) 12(11,13) 13(12,14) 16
Hebei 17(16,19) 22(20,24) 24(22,26) 25(23,27) 26(24,28) 33
Henan 6(6,7) 7(6,7) 9(8,9) 9(8,10) 10(8,11) 13
Shandong 35(32,38) 36(33,39) 36(33,39) 37(34,40) 42(38,45) 39
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3.5. Data validation

Uncertainties associated with the estimates in our work may arise
from the calculations of CO2 emissions from central heating at a city
level and the use of nighttime light data as the proxy to establish the
CO2 emission inventories in the NCP region on a gridded basis. The CO2

emissions from central heating are calculated through a bottom-up
approach based on fuel consumption data and emission factors. The fuel
consumption data are collected from the official China statistical
yearbooks, which may contain an uncertainty (one standard deviation)
of± 5% for gas and± 10% for coal [3,15]. The uncertainty for emis-
sion factors for coal-boilers and thermal power plants is± 3% and for
gas-boilers is± 2%, which is the same value calculated by Liu et al. [3].

The Monte Carlo approach is used to assess the distribution range
(95% CI) of the bottom-up calculated CO2 emissions on the prefecture-
city level, which is then aggregated to the provincial level (Table 2). At
the provincial level, the Monte-Carlo simulations suggest relatively
small uncertainties in Beijing (e.g., 95% CI=29–32 Tg in 2015) and
Tianjin, modest uncertainties in Hebei and Shandong, and the largest
uncertainty in Henan.

Table 2 also shows that our bottom-up emissions of the five pro-
vinces in 2015 are lower than those in Du et al. [15] by 5–40%. In Du
et al., the gas consumption data were not available before 2012, and so
they estimated the share of gas-fired boilers based on the heat loss
during the production and consumption process, which information is
available from the energy balance tables of the “China Energy Statis-
tical Yearbooks” [55]. By comparison, we directly use the gas con-
sumption data for central heating at the prefecture city level over
2012–2016 provided by the MOHURD [10].

Satellite-based NTL data are used as a proxy to project city-level CO2

emissions to a 5× 5 km2 grid under the assumption that NTL data

directly correlates with CO2 emissions from central heating. NTL data
are subject to uncertainties in various aspects, although we have made
efforts to reduce these uncertainties. Saturated pixels in this study were
processed and assigned the highest intensity values derived from
Beijing and Shanghai Municipalities. Future work should be done to
further improve the quality of NTL data and to adopt more methods for
the data correction process [51].

The panel regression model implies that the relationship between
NTL data and CO2 emissions from central heating is linear in this study.
To validate this assumption, Fig. 10 compares the regression model
estimated CO2 emissions (SEi in Eq. (4)) and bottom-up calculated CO2

emissions (EEi in Eq. (4)) of 48 cities in 2012–2016. The figure shows
high consistency between SEi and EEi, suggesting that the panel re-
gression model has performed well at estimating city-level CO2 emis-
sions from central heating. This provides confidence in using NTL data
as the spatial proxy to build a gridded CO2 emission inventory, as also
found in previous studies [56]. Nonetheless, applying the regression
relationship to each grid cell raises an additional uncertainty, which is
difficult to assess and not quantified here. Note that when aggregated to
the city level, the emission uncertainty is reduced to that in the bottom-
up calculation.

4. Conclusions

This work combines a bottom-up emission calculation, satellite
nighttime light data and a panel regression model to study the spatio-
temporal dynamics of CO2 emissions from central heating in the North
China Plain region over 2012–2016. It also examines the effects of re-
cent developments in natural gas-based heating, on a 5×5 km2 grid.
We find that Beijing, Tianjin, Shijiazhuang and Qingdao have the lar-
gest CO2 emissions during 2012–2016. Most cities exhibit emission

Fig.10. Scatter plots for the regression model estimated CO2 emissions (SEi in Eq. (4), y-axis) and bottom-up calculated CO2 emissions (EEi in Eq. (4), x-axis), on a
city-level and annual basis.
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growth throughout the years because of the increasing need of energy
for central heating. However, emissions in Beijing decrease by 4060
GgCO2 from 2012 to 2016.

The gridded emission map shows that CO2 emissions from central
heating supply are mainly from urban consumption (60–67%) in Beijing
and Tianjin, although the gap in emissions for urban versus non-urban
heating narrowed from 2012 to 2016. Meanwhile, in Hebei, Henan and
Shandong provinces, non-urban heating contributed to the majority of
heating-related CO2 emissions (56–69%).

Our study also separates CO2 emissions from coal burning (in-
cluding coal-fired heating systems and cogeneration thermal power
plants) and the emissions from gas-fired boilers. During 2012–2016,
coal still played a dominant role in the central heating supply and
heating-related CO2 emissions over the NCP. The gridded CO2 emis-
sions data show that from 2012 to 2016, most cities in South Hebei,
North Henan and West Shandong exhibited enhancements in coal use
and resulting emissions. Although many cities have increased the
fraction of gas-fired boilers for central heating throughout the years,
gas-based heating still plays only a minor role in both the heating
supply and resulting emissions. Beijing has had the most dramatic
transformation from coal- to gas-based central heating, such that in
Beijing the contribution of gas-related emissions increased from 1.9% in
2012 to 31.2% in 2016.

Overall, we find that further efforts to improve the energy efficiency
in central heating and/or to promote cleaner energy sources are needed
to reduce CO2 emissions. Also, although gas-fired boilers lead to less
CO2 emissions than coal-based heating (to generate the same amount of
heat), the potential gas (methane) leakage must be avoided or mini-
mized, as methane is a greenhouse gas with a higher global warming
potential than CO2 per unit mass.

Our gridded CO2 emission data can be used as inputs to atmospheric
chemical transport models or Earth System Models to study carbon flux
and cycling [32,42]. Also, our integrated approach may be applied to
other cities and other pollutants (e.g., NOx and SO2) in China and
elsewhere to facilitate city-level pollution control and climate change
mitigation.
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