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ABSTRACT: Nitrogen dioxide (NO2) at the ground level poses a serious threat to
environmental quality and public health. This study developed a novel, artificial
intelligence approach by integrating spatiotemporally weighted information into
the missing extra-trees and deep forest models to first fill the satellite data gaps and
increase data availability by 49% and then derive daily 1 km surface NO2
concentrations over mainland China with full spatial coverage (100%) for the
period 2019−2020 by combining surface NO2 measurements, satellite tropospheric
NO2 columns derived from TROPOMI and OMI, atmospheric reanalysis, and
model simulations. Our daily surface NO2 estimates have an average out-of-sample
(out-of-city) cross-validation coefficient of determination of 0.93 (0.71) and root-
mean-square error of 4.89 (9.95) μg/m3. The daily seamless high-resolution and
high-quality dataset “ChinaHighNO2” allows us to examine spatial patterns at fine
scales such as the urban−rural contrast. We observed systematic large differences
between urban and rural areas (28% on average) in surface NO2, especially in provincial capitals. Strong holiday effects were found,
with average declines of 22 and 14% during the Spring Festival and the National Day in China, respectively. Unlike North America
and Europe, there is little difference between weekdays and weekends (within ±1 μg/m3). During the COVID-19 pandemic, surface
NO2 concentrations decreased considerably and then gradually returned to normal levels around the 72nd day after the Lunar New
Year in China, which is about 3 weeks longer than the tropospheric NO2 column, implying that the former can better represent the
changes in NOx emissions.
KEYWORDS: surface NO2, air pollution, big data, artificial intelligence, COVID-19

1. INTRODUCTION
Nitrogen dioxide (NO2) is one of the most important trace
gases in the atmosphere, greatly impacting the ecological
environment and air quality.1−4 It is a major pollutant near the
ground and can be inhaled, posing a health threat.5,6 Nitrogen
oxides (NOx = NO2 + NO) are PM2.5 precursors in haze and
lead to the formation of surface ozone.7,8 NOx comes from
diverse and complex sources including fossil-fuel-fired power
plants, automobile exhaust, industrial activities, biofuel, and
resident cooking; the major natural sources are wildfires, soil,
and lightning.9

Surface NO2 levels are an important measure of air quality/
pollution. Because NOx has a short atmospheric lifetime, it is
challenging to accurately quantify surface NO2 concentrations
with good spatial coverage based on sparse ground-based
monitoring stations, especially in developing countries with
dense populations, like China. Satellite remote sensing allows
monitoring of global NO2 distributions and variations such as
with the global ozone monitoring experiment (GOME)

instrument10 and the ozone monitoring instrument
(OMI).11,12 However, satellites can provide only the total or
tropospheric NO2 columns. Attempts have been made to
convert satellite tropospheric NO2 retrievals to ground-level
concentrations using different chemical transport13 and
statistical models. Qin et al. adopted the geographically and
temporally weighted regression (GTWR) and extremely
randomized trees (ERT) models to derive daily surface NO2
from OMI tropospheric NO2 products and meteorological data
in central−eastern China.14,15 The daily ambient NO2
exposure was also estimated in China from OMI tropospheric
NO2 products and environmental data by combining the
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universal kriging or the K-means approaches with land-use
regression (LUR)16 and different machine-learning models
(e.g., random forest or RF).17−19 Li and Wu applied the deep
learning of full residual deep networks (FSDN) to obtain the
outdoor NO2 concentrations in China by incorporating OMI
tropospheric NO2 and other covariates.20

These surface NO2 estimates were generated from OMI on
the Aura satellite with spatial resolutions, 13 km × 24 km at
nadir and up to ∼26 km × 160 km at the edge of the swath,
which cannot resolve high variations of surface NO2 at
medium or small (urban) scales.21,22 The Tropospheric
Monitoring Instrument (TROPOMI) is onboard the coperni-
cus sentinel-5 precursor (S5P) satellite, launched on 13
October 2017, and provides higher-spatial-resolution tropo-
spheric NO2 retrievals (e.g., 3.5 km × 5.5 km after August
2019). So far, only a handful of studies have employed the
TROPOMI data to estimate near-surface high-resolution NO2
concentration-adopted statistical regression (e.g., GTWR) and
machine-learning [e.g., light gradient boosting machine
(LightGBM) and extreme gradient boosting (XGBoost)]
models.23−25

Most previous studies have simply directly applied tradi-
tional methods that ignored the spatiotemporal heterogeneity
of air pollution, especially machine learning that works via the
single-pixel-based processing mode.26 This leads to an
inhomogeneous distribution of air pollution with the non-
smooth transition or the discontinuity of air pollution mass in
the space (and possibly yielding “salt and pepper” white noises
in the data). In addition, the weaker signals of trace gases bring
greater difficulties in both satellite gap filling and ground-level
air pollutant estimation. It is thus necessary to consider
additional factors such as model simulations and emission
inventories to develop more accurate methods to improve
accuracy. Here, a novel framework integrating machine and
deep-learning models by involving spatiotemporally weighted
characteristics of air pollution is developed to fill missing values
in satellite tropospheric NO2 products and derive daily
seamless 1 km resolution ground-level NO2 concentrations
from rich big data across mainland China. Last, the application
and fidelity of the dataset are demonstrated by analyzing the
spatial distributions of surface NO2 across China and their
variations during statutory holidays and the COVID-19
pandemic.

2. MATERIALS AND METHODS
2.1. Big Data. Data used in our study include ground-based

in situ observations, satellite remote sensing products,
atmospheric reanalysis, and model simulation. Hourly
ground-level NO2 concentrations (unit: μg/m3) measured at
∼1630 monitoring stations across mainland China from 1
January 2019 to 31 December 2020 were collected from the
Chinese Ministry of Environment and Ecology. Daily means
were calculated from hourly observations that had undergone
additional quality control measures,27 i.e., filtering out invalid
values and outliers caused by suspected instrument malfunc-
tion (details provided in Supporting Text 1).

Daily TROPOMI tropospheric NO2 products (unit: 1e15
mol/cm2) at a high spatial resolution of 1 km in China
generated using a new algorithm and downscaled following the
area-weighted method were employed.28 This approach has
significantly reduced the uncertainty compared to official
products, especially in highly polluted areas that had been
severely underestimated.29−31 Here, the recommended good-

quality (quality assurance value > 0.75) tropospheric vertical
column NO2 retrievals were selected. In addition, new daily
OMI tropospheric NO2 products (0.25 × 0.25°) reconstructed
in mainland China32 were employed. NO2 simulations (0.75 ×
0.75°) every 1 h modeled at tropospheric and ground levels
were calculated from the CAMS global reanalysis, and monthly
anthropogenic NOx emissions (0.1 × 0.1°) were obtained from
the CAMS global emission inventory.33

The ERA5 hourly atmospheric reanalysis product contains
eight meteorological fields, i.e., boundary layer height (BLH),
2 m temperature (TEM), evaporation (ET), precipitation
(PRE), relative humidity (RH), 10 m u-component of wind
(WU), 10 m v-component of wind (WV), and surface pressure
(SP), collected from the ERA5 hourly atmospheric reanalysis
products.34,35 Population-related data include the 1 km
landScan population distribution (POD) and 1 km visible
infrared imaging radiometer suite nighttime light (NTL)
products. Land-surface-related data include the moderate
resolution imaging spectroradiometer (MODIS) land-use
type (500 m) and normalized difference vegetation index
(NDVI, 1 km) products and the shuttle radar topography
mission (SRTM) digital elevation model (DEM, 90 m)
products. Table S1 summarizes the detailed information on
big data used in our study, and all of the auxiliary data were
regridded to a uniform spatial resolution of 0.01 × 0.01° (≈1
km × 1 km).
2.2. Methodology. We combine machine- and deep-

learning models that consider the spatiotemporal heterogeneity
of air pollution. The model framework includes a spatiotem-
porally weighted missing extra-trees (SWMET) model for
filling the satellite tropospheric NO2 gaps and a spatiotempor-
ally weighted deep forest (SWDF) model to estimate surface
NO2.

2.2.1. Tropospheric NO2 Gap Filling. Ubiquitous clouds in
optical remote sensing images prevent tropospheric below-
cloud NO2 information from being detected due to shielding.
An efficient machine-learning model, named missing extra-
trees (MET),36 was adopted to fill satellite data gaps. Differing
from traditional methods (e.g., inverse distance weight or
kriging), MET is a nonparametric spatial interpolation method
that works like the missing forest37 but with stronger
randomizations, which can impute a dataset with missing
values in multiple variables using an iterative way. It belongs to
tree-based ensemble learning, which has a strong antinoise
capability and is insensitive to multivariate collinearity. Here,
spatiotemporal autocorrelations in satellite tropospheric NO2
retrievals were considered in the MET model, leading to a new
spatiotemporally weighted extra-trees (SWMET) model. This
model was used to impute missing values in OMI and
TROPOMI tropospheric NO2 retrievals in sequence through
two iterations, respectively, together with other spatiotempor-
ally continuous auxiliary variables with potential influence
(details provided in Supporting Text 2).

2.2.2. Ground-Level NO2 Estimation. Considering the more
complex and weaker relationships with tropospheric signals,
deep learning (more flexible with a higher capability) was
employed to estimate ground-level NO2 concentrations. Deep
forest (DF), developed by Zhou and Feng in 201738 and
recently updated in 2021, was adopted. Based on the idea of
deep neural networks that stack neural networks, DF stacks
multilayer RFs and completely random tree forests in a cascade
to obtain better feature representation and learning perform-
ance. DF can handle data of different scales without setting
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super parameters and has more competitive performance and a
better physical interpretation than other “black box” deep-
learning models. We also introduce a new SWDF model that
incorporates the spatiotemporally weighted information into
the DF model to construct a robust tropospheric-surface NO2
conversion model involving all potential influencing factors
(details provided in Supporting Text 3). Here, the model was
trained and built each year separately for ground-level NO2
estimations in China.

2.2.3. Spatiotemporal Weight Information. Temporally,
air pollution can have strong seasonal cycles, and concen-
trations vary on the daily as well as synoptic scales, which may
be similar on adjacent days, but differences increase as the time
interval increases. In addition, such short-lived species also vary
significantly spatially, where the farther away the two points
are, the more different the polluted level is. Such differences in
time and space are often not equal. Therefore, in this study,
different from our previous studies that only considered the
equal effects,39,40 spatiotemporally weighted information at
different spatial points was updated and incorporated in the
original artificial intelligence models to better distinguish
spatiotemporal differences in air pollutants and improve their
estimates.

The spatial term (Ps) is represented by the latitude (Lat)
and longitude (Lon) information of one point, and the square

root of inverse Haversine great-circle distances41
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2.2.4. Validation Method. The widely used out-of-sample
10-fold cross-validation (10 CV) method, where data samples
are randomly divided into 10 folds, saving one fold for testing,
was selected to evaluate the overall accuracy of surface NO2
estimates.42 In addition, considering the use of information
from neighboring stations, a new independent out-of-city 10
CV approach, where cities are randomly divided into 10 folds,
saving one fold for testing, was employed to assess the model’s
predictive ability in space, i.e., surface NO2 predictions at
locations where ground-based measurements are not available.

3. RESULTS AND DISCUSSION
3.1. Model Performance. 3.1.1. Tropospheric and

Surface NO2 Results. The OMI tropospheric NO2 product
has nearly complete spatial coverage (average = 87%) after
preliminary data fusion by integrating global ozone monitoring
experiment-2B (GOME-2B) NO2 information using a
reconstructed framework (Figure S1a).32 In contrast, TRO-
POMI tropospheric NO2 products have a large number of
missing retrievals with an average spatial coverage of only
about 51%, especially in the pluvial areas of southern China
(Figure S1b). Applying the SWMET model, daily 1 km
tropospheric NO2 maps with a spatial coverage increasing to

Figure 1. National and regional (zoomed-in subplots) spatial distributions of (a) original and (b) gap-filled TROPOMI tropospheric NO2 columns
(mol/cm2, bottom-left legend), and (c) our model-derived and (d) ground-measured surface NO2 concentrations (μg/m3, bottom-right legend) on
28 January 2019 in China. Red circles in the subplots outline areas of heavy pollution.
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100% covering mainland China were generated. In general,
tropospheric NO2 information in missing areas can be well
reconstructed (Figure 1a,b) even under highly polluted
conditions (areas outlined by red circles).

Figure 1c shows a typical example of the spatial distribution
of our model-derived ground-level NO2 concentrations on an
individual day, i.e., 28 January 2019. By filling satellite gaps,
our ChinaHighNO2 dataset can provide surface NO2
information at any location throughout the country. Compared
with ground measurements, our gap-filled dataset can also
capture the spatial distributions of surface NO2 in lightly
polluted areas, e.g., northeast and southwest China (Figure
1d). More importantly, our predictions are highly consistent
with observations both in spatial patterns and magnitudes over
severely NO2-polluted areas in eastern China, especially the
North China Plain, where a large number of missing values
existed in satellite tropospheric data (Figure 1a). This further
illustrates the superior performance of our gap-filling method
under polluted conditions.

3.1.2. Validation of NO2 Estimates and Predictions. Gap-
filled tropospheric NO2 data compare well with multiaxis
differential optical absorption spectroscopy (MAX-DOAS)
measurements (only a slightly decreased correlation of 0.72
from 0.85 compared to nongap-filled retrievals) at the
individual Xuzhou site (34.22° N, 117.14° E). However,
limited by the available number of ground monitors, the same
independent cross-validation method adopted in previous
studies20,24 was selected to further validate gap-filling data. The
results illustrate that our tropospheric NO2 predictions are
reliable, with the average coefficient of determination (R2)
values ranging from 0.89 to 0.96 and root-mean-square error
(RMSE) values ranging from 0.46 × 1015 to 1.51 × 1015 mol/
cm2.

For ground-level NO2 data, we first evaluate the estimation
accuracy of the developed SWDF model based on the out-of-
sample CV approach at different spatiotemporal scales in
China (Figure 2). Daily surface NO2 estimates (number of
estimates, N = 1,045,584) are highly consistent with ground
measurements (CV-R2 = 0.93), showing low uncertainties,
with an average RMSE of 4.89 μg/m3 and mean absolute error
(MAE) of 3.48 μg/m3 during 2019−2020 over the whole of
China (Figure 2a). However, our surface NO2 estimates tend
to be biased low but not much (slope from linear regression =
0.92). This is mainly because the smaller number of data
samples in the case of heavy pollution can affect the model
training. Also, satellite tropospheric NO2 columns under
heavily polluted conditions are easily underestimated. Our
model works well (e.g., CV-R2 = 0.91−0.94, RMSE = 5.2−5.5
μg/m3) in three typical urban agglomerations (Table S2). It
also performs well at the individual-site scale, especially in East
China (e.g., CV-R2 > 0.9, RMSE < 4 μg/m3). In general,
approximately 83 and 85% of the monitoring stations across
mainland China have high CV-R2 values greater than 0.8 and
low RMSE values of less than 6 μg/m3, respectively (Figure
2b). The model is also relatively stable and less affected by
time changes, and it can well estimate the time series of surface
NO2 concentrations on most days (Figure 2c).

We next examine the predictive ability of our model
according to the out-of-city CV approach at varying
spatiotemporal scales in China (Figure S2). The model can
well predict daily NO2 concentrations at locations in China
where there are no ground-based measurements (i.e., CV-R2 =
0.71, RMSE = 9.95 μg/m3, and MAE = 7.4 μg/m3; Figure
S2a). It also shows a strong predictive ability at regional scales
(e.g., CV-R2 = 0.7−0.77, RMSE = 9.5−11.1 μg/m3; Table S2).
Predictions are also reliable with small uncertainties at ∼84%

Figure 2. Out-of-sample cross-validation of daily ground-level NO2 estimates (μg/m3) (a) over the whole of China, (b) at each monitoring station,
and (c) for each day of 2019 (filled dots) and 2020 (unfilled dots).
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of the stations (i.e., CV-R2 > 0.5, RMSE < 12 μg/m3),
especially those located in eastern China where the observation
network has a high station density (Figure S2b). The model
can capture daily variations of surface NO2 in areas without
available surface observations on most days in the years
considered (Figure S2c). Compared to the estimation
accuracy, the decline in predictive accuracy is mainly due to
huge differences in the level of economic development among
Chinese cities, especially in the eastern and western regions,
which is closely related to NOx emissions.
3.2. Spatiotemporal Characteristics of Surface NO2.

3.2.1. ChinaHighNO2 Dataset. Using the SWMET model, we
have generated a daily, full-coverage (100%), high-resolution
(1 km), and high-quality ground-level NO2 dataset across
mainland China (i.e., ChinaHighNO2) for the years 2019 and
2020, one of the series of ChinaHighAirPollutants (CHAP)
dataset. Monthly and annual surface NO2 datasets are also
synthesized by averaging daily data. These temporal surface
NO2 composites (N = 35,496, and 2958, respectively) agree
well with ground observations (R2 = 0.95 and 0.96,
respectively), with low uncertainties (e.g., RMSE = 3.11 and
2.35 μg/m3, respectively) in China. These results further
illustrate that our ChinaHighNO2 dataset can be used to study
spatiotemporal variations in surface NO2 exposure across
China.

Figure 3 shows the spatial distributions of national and
regional annual mean surface NO2 concentrations during
2019−2020, and their potential influential factors across
China. The annual mean NO2 concentration was 17.5 ± 6.5
μg/m3 in China. In general, urban and cropland areas (red and
yellow areas, respectively, in Figure 3b) corresponded to high
surface NO2 concentrations, where high pollution levels (i.e.,
annual NO2 > 40 μg/m3) were mainly observed in central and
eastern China regions with developed economies and

concentrated populations (Figure 3c,d), e.g., the Beijing−
Tianjin−Hebei (BTH) urban agglomeration and the Yangtze
River Delta (YRD). In northwest China, the distribution of
surface NO2 concentrations generally followed the distribu-
tions of populations and roads, suggesting that the sources of
NO2 were mainly from anthropogenic and transportation
emissions (Figure 3d,e). By contrast, southwest and northeast
China had low NO2-pollution levels due to limited human
activities in those regions. However, there are still positive
biases in surface NO2 estimates in the vast cleaner areas (e.g.,
the Taklimakan Desert and Tibet), mainly because oxidized
nitrogen species are present, leading to uncertainties in surface
measurements.43,44 It is also worth noting that for any
machine-learning (ML), especially deep-learning (DL),
method, having an adequate number of ground-based stations
to provide training data is essential. Less than a certain
number, the ML would not have enough samples to “learn”,
which is especially the case in western China where the
stations are very few, and they do not represent the vast area of
uninhabited land. Fortunately, this issue does not affect our
conclusions that are chiefly concerned with air quality in more
populated regions in eastern China.

The ChinaHighNO2 dataset can provide detailed surface
NO2 information at finer city levels due to its high 1 km spatial
resolution. Tianjin, Tangshan, and Langfang are the three cities
with the most severe surface NO2 exposure. Most of the top 30
polluted cities are located in traditional heavy industrial areas
in China, e.g., the BTH region and Shandong and Henan
provinces. Large amounts of pollution gases are emitted from
manufacture plants (Figure S3a).45 In general, surface NO2
levels are positively correlated with the level of urban economic
development and population density, as proxied by the
logarithm of NTL (R = 0.64, p < 0.001)21 and the population
number (R = 0.41, p < 0.001), respectively (Figure S3b). We

Figure 3. Spatial distributions of annual mean (a) national and regional (zoomed-in subplots) ground-level NO2 concentrations (μg/m3), (b) land-
use cover (LUC), (c) nighttime lights (NTL), (d) population (POP), and (e) roads in China. Regions shown in panel (a) are the Sichuan Basin
(SCB), Beijing−Tianjin−Hebei (BTH), the Pearl River Delta (PRD), and the Yangtze River Delta (YRD).
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then calculated surface NO2 concentrations between urban and
suburban areas, segmented from harmonized NTL using the
stepwise-partitioning framework,46 at all cities in China. Large
urban−rural differences are seen (average relative difference =
28%), especially for the provincial capitals, accounting for
more than one-third of the top 30 prefecture-level cities
(Figure S4). Such differences are closely associated with the
size of the urban area compared with the size of the rural area
and the distribution and density of populations. For example,
Urumqi and Xi’an in western China have small core urban
areas located with the highest population density (Figure 3d),
leading to greater urban/rural NO2 differences.

Surface NO2 concentrations varied significantly on a
seasonal basis (Figure S5), where the highest surface NO2
occurred in winter, with an average value of 20.9 ± 8.9 μg/m3,
especially in the BTH region (∼39.2 ± 13.0 μg/m3). The next
highest surface NO2 concentrations occurred in autumn
(average = 19.3 ± 7.4 μg/m3) followed by spring (average =
16.2 ± 6.2 μg/m3). The peak in winter results from the
combustion of coal and fossil fuels for heating in northern
China, emitting a large amount of NOx. NO2 concentrations
were lowest in summer (average = 13.8 ± 4.1 μg/m3),
especially in southern China. This was mainly due to faster
chemical loss via the OH + NO2 + M reaction. Summertime
and low latitudes generally have higher levels of solar radiation
and OH, shortening the NO2 lifetime.

3.2.2. Holiday and Weekly Effects. The effects of holidays
in China, i.e., the Spring Festival (5−11 February 2019) and
National Day (1−7 October 2019), on surface NO2
concentrations are first investigated (Figures S6 and S7). In
general, the spatial patterns over time of our model-derived
surface NO2 concentrations agree well with ground observa-
tions. Before the Spring Festival, surface NO2 first remained
high until February 1 due to normal conditions in most areas
in China, especially in northern China, dominated by heavy
industry. During the holiday, surface NO2 concentrations
declined rapidly in eastern China because most factories

gradually closed down over time, greatly reducing anthro-
pogenic emissions. The lowest level of NO2 concentration in
the country occurred around 7 February. Toward the end of
the holiday, factories began to reopen, and surface NO2 levels
gradually picked up. After the lantern festival (19 February),
surface NO2 concentrations returned to their normal levels.

Surface NO2 concentrations during the National Day
holiday had a similar temporal trend, i.e., high before the
holiday, gradually decreasing over time, reaching a minimum
value around 4 October during the holiday, then gradually
increasing, returning to their normal levels on 9 October.
These two general rounds of change and recovery of surface
NO2 for the two festivals lasted for about 4 and 2 weeks,
respectively, which was closely related to anthropogenic
emissions. However, significant decreases in NO2 concen-
tration before the festivals (e.g., 30 January to 1 February, 25−
27 September) or the sudden fluctuations over a short period
(e.g., 17−21 February, 9−13 October) may have likely been
due to changes in meteorological conditions.

On the national and regional levels, surface NO2
concentrations during the Spring Festival and National Day
holidays were much lower by 22 and 14% than those before
and after these holidays in China, respectively. In the BTH and
YRD regions, in particular, maximum relative differences
reached above 60 and 39%, respectively, illustrating strong
holiday effects on surface NO2 concentrations (Figure 4a,b).
Surface NO2 concentrations showed a slowly increasing trend
on weekdays, decreasing by ∼6% on Sundays in BTH. In the
other three regions and over the whole of China, surface NO2
concentrations stayed at a relatively stable level, with small,
irregular changes (Figure 4c). Overall, differences in surface
NO2 concentrations in China and in each region between
weekdays and the weekend were small, within ±1 μg/m3. This
differs from other parts of the world, such as Europe and the
United States, where surface NO2 is much higher on weekdays
than on weekends.47−49 This is mainly attributed to differences
in economic production activities, e.g., factories in China

Figure 4. Comparison of average surface NO2 concentrations (μg/m3) before, during, and after (a) Spring Festival and (b) National Day holidays,
and (c) during weekdays and the weekend in China and four typical regions. BTH, YRD, PRD, and SCB stand for Beijing−Tianjin−Hebei, Yangtze
River Delta, Pearl River Delta, and Sichuan Basin, respectively.
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operate on a continuous schedule, leading to continuous
emissions.

Although similar results can be concluded from ground
measurements on holidays (Figure S8a,b), larger amplitudes
are observed in surface NO2 changes before and after the
holidays (2.8−3.7 times larger, especially over the whole of
China and SCB). The main reason is that stations are unevenly
distributed and mainly located in cities, reflecting NOx
emissions in urban areas. By contrast, satellite tropospheric
NO2 data capture weaker or even opposite holiday effects
(Figure S9a,b). Similar weak weekday/weekend differences are
observed from all data sources. With respect to NO2 changes
through the week, our results are more consistent with ground
measurements, while tropospheric NO2 column changes tend
to be irregular (Figures S8c and S9c). The full coverage of our
dataset makes up for the spatial and data heterogeneities
inherent to surface observations and more accurately describes
changes in surface NO2 in the region.

3.2.3. Surface NO2 Changes During the COVID-19
Pandemic. Surface NO2 variations related to the COVID-19
epidemic,50−52 that broke out in Wuhan, Hubei province,
China, are investigated. Figure 5 shows the time series of daily
ground-level NO2 concentrations and relative changes between
2020 and 2019 during six periods (denoted as P1−P6) before
and after the Lunar New Year in eastern China. Before the
outbreak (P1), surface NO2 concentrations changed little in
most areas of eastern China but began to decrease in Hubei
province and surrounding areas. During the lockdown (P2),
surface NO2 concentrations dropped sharply, with relative
changes greater than 60% over nearly all of eastern China. This
was mainly due to the cessation of industrial production and
human activities, significantly reducing NOx emissions.53,54

Previous studies based on ground-based measurements and
satellite estimates have also reported this phenomenon.51,55

The lockdown had a strong and sustained impact on surface
NO2 concentrations (relative changes > 30%) until the 48th
day after the Lunar New Year (P3). After P3, the impact
gradually decreased in most areas (P4) due to increasing
anthropogenic emissions as the epidemic was gradually
controlled and cities lifted bans.53 During P5 and P6, surface
NO2 concentrations gradually recovered to their historical
levels, with relative changes within ±20% in most areas of East
China, including severe epidemic areas (e.g., Hubei province)
and even slightly higher in some low-risk areas, e.g., southeast
China, indicating that human life had returned to normal. Note
that there were also some significant hotspots, e.g., in Henan
and Fujian provinces, in different periods. These areas are
mainly forested and densely vegetated areas with little or no
population (Figure 3b,d) and very low surface NO2 levels,
where small changes will lead to large relative differences.

Figure S10 compares variations in tropospheric NO2
columns and ground NO2 measurements during the
COVID-19 pandemic. A similar temporal trend was found,
namely, that NO2 significantly decreased during the lock-
down,56 reaching a minimum value around the 22nd day after
the Lunar New Year and rising steadily over time after the
lockdown ended. However, noticeable differences were seen in
the timing of the NO2 recovery. Tropospheric NO2 in 2020
first intersected with the historical level of 2019 (highlighted
by the black circle in Figure S10b) on the 52nd day after the
Lunar New Year (16 March 2020), with both time series
generally following the same trend during P5 and P6. For
surface-measured NO2 concentrations, this intersection with
the historical level of 2019 (highlighted by the black circle in
Figure S10a) occurred around the 72nd day after the Lunar
New Year (5 April 2020), also seen in our modeled results
(Figure 5). The duration of the impact of the lockdown on the
tropospheric NO2 column was about 1.7 times shorter than

Figure 5. Time series of the 3-day moving average of daily surface NO2 concentrations (μg/m3) in China (bottom panel) and the relative
difference (%) in surface NO2 concentrations (μg/m3) between 2020 and 2019 (top panel) during six periods (i.e., P1−P6) in eastern China
before and after the Lunar New Year. The red border and star in the top panel indicate Hubei Province and Wuhan City, respectively. The gray
circle in the bottom panel highlights when the surface-measured NO2 concentration from 2020 reached the 2019 historical level. The dashed blue
line shows the linear trend for observations during the period experiencing the impact of the lockdown in 2020. The slope (k) is given, and the
three asterisks indicate p < 0.001.
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that on surface NO2. Large differences were also found in the
speed of NO2 recovery after lockdown. The slope of the trend
for observations (Figure S10a) was the steepest (∼0.2 μg/m3/
day, p < 0.001), four times that of ours (Figure 5), while that
for the tropospheric NO2 column (Figure S10b) was the least
steep (∼0.02 μg/m3/day, p < 0.001). This is mainly due to the
difference in spatial representation, i.e., observations represent
the change in NO2 in urban areas, while the tropospheric NO2
column represents the whole troposphere. Such a difference
suggests that surface NO2 can better represent changes in NOx
emissions at the local scale compared to the tropospheric NO2
column. The potential reasons may be that NO2 is directly
related to the emission strength as a result of the relatively
short lifetime (hours near the surface). Therefore, surface NO2
is more sensitive to anthropogenic emissions, e.g., fuel
combustion, urban automobile exhaust, and industrial
production, often occurring at the ground level. By contrast,
tropospheric NO2 contains more information coming from
complex sources that are smeared over large areas and can be
further affected by convection or diffusion like transport,
chemistry, and atmospheric lightning.

3.2.4. Surface NO2-Pollution Exposure Risk. The unique
advantage of the full coverage of our ChinaHighNO2 dataset is
the ability to assess the daily surface NO2 exposure risk, i.e.,
exceedance of the national air quality standard (i.e., daily NO2
= 80 μg/m3), at every location across China in 2019 and 2020,
separately (Figure S11). In 2019, most areas of China met the
acceptable ambient NO2 standard year-round, except for key
urban agglomerations, i.e., BTH, YRD, and the Pearl River
Delta. In particular, core urban areas of the capitals and
megacities in the main provinces (e.g., Tianjin, Shijiazhuang,
Jinan, Taiyuan, Xi’an, Wuhan, Shanghai, and Foshan) had a
high exposure risk, i.e., the percentage of days in 2019 not
meeting the acceptable ambient NO2 standard exceeded 10%.
A similar spatial pattern was observed in 2020, the area with an
ambient NO2 exposure risk expanding into the YRD. Overall,
in 2020, the probability of NO2-pollution occurrence declined
across mainland China, especially in three typical urban
agglomerations, mainly due to the impact of the epidemic.
3.3. Discussion. 3.3.1. Advantage of the New Model.

Unlike traditional “black box” deep-learning models, the tree-
based DF can be more physically interpretable, allowing the
assessment of the importance of each input variable to model
construction (Figure S12). Tropospheric NO2 is dominant,
with the highest importance score (>31%), followed by the
modeled surface NO2 (importance score = 15%). Spatial and
temporal terms account for 14 and 10%, respectively,
highlighting the importance of spatiotemporal information to
air pollution modeling. Meteorological conditions also play key
roles, especially RH and TEM, with a cumulative importance
score near 20%. Variables related to the surface and population
also have important impacts, contributing ∼5% each.

3.3.2. Comparison of Different NO2 Products. Only a few
model studies developed focused on near-surface NO2 in
China have performed gap filling. Our model performs better
than others,24,25 or is compatible,20 in terms of overall accuracy
(Table S3). Our results should be superior to traditional
interpolation methods (e.g., inverse distance weighting and
kriging), especially in areas with a complex terrain with rapidly
varying land cover and topography.52 Our gap filling is
smoother with less noise compared to FSDN-filling results
(e.g., Figure 8 in Li and Wu, 2021)20 that neglect tropospheric

model simulations, especially spatiotemporal autocorrelations
of air pollution.

OMI tropospheric NO2 products were first used to derive
ground-level NO2 concentrations at coarse spatial resolutions
from the original ∼0.25°15,17,18,57 to direct resampling of
∼0.12516,19 or ∼0.1°14 (Table S4). Later, the resolutions of
surface NO2 estimates improved to ∼0.0524,58 and ∼0.025°25

using the newly launched TROPOMI satellite. Our study
further improved the spatial resolution to 1 km using
TROPOMI NO2 retrievals via area-weighted downscaling,
about 2.5−25 times higher than previous studies. Note that
another study also generated 1 km surface NO2 data but relied
on the much coarser OMI NO2 information as the main
input.20 In terms of overall accuracy, our SWDF model is
superior to traditional statistical regression models (e.g.,
GTWR,14 LUR,16 UK&SBM,19 and GTWR-SK25) and popular
machine- and deep-learning models (e.g., RF-K, RF-SK,18

FSDN,20 LightGBM,24 BME,57 and XGBoost58,59), improving
the CV-R2 by 9−55% and reducing the RMSE by 23−64%.
The 1 km ground-level NO2 dataset represents a substantial
improvement over existing surface NO2 data in China,
potentially valuable for nitrogen-cycle and health-related
studies, especially in urban areas.
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