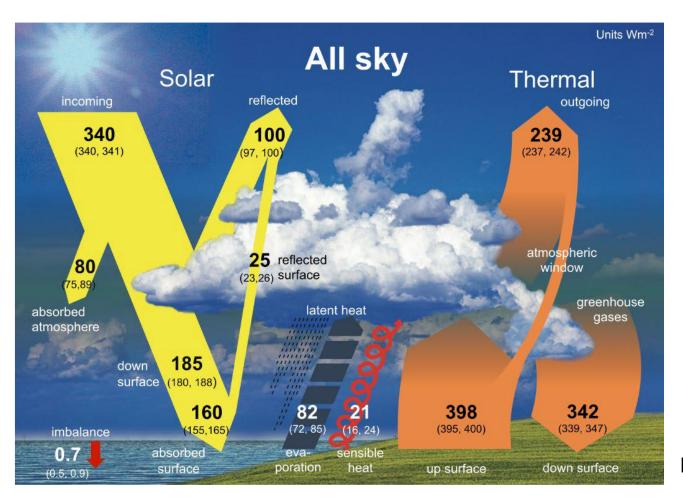
Radiation

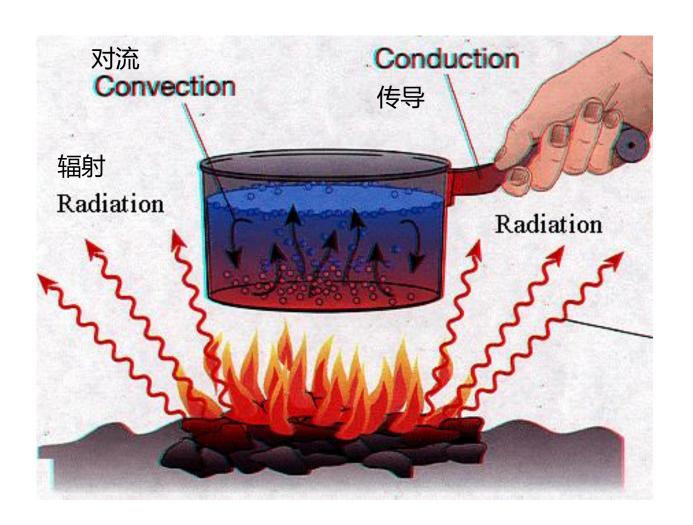
Jintai Lin

致谢:本课件中部分资料来自李成才老师 (特别是关于辐射的部分)。



Outline

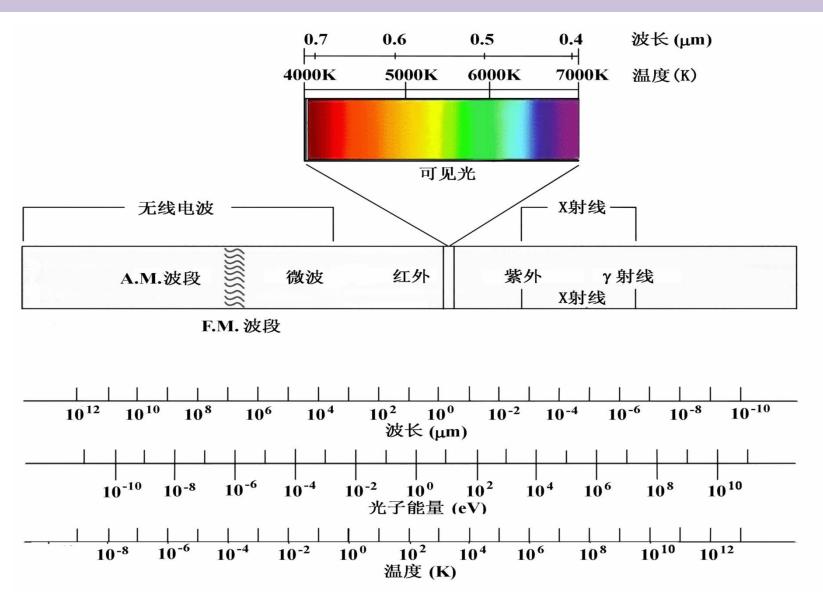
- Introduction
- Basics
- Absorption
- Scattering
- Radiative transfer
- Radiative equilibrium temperature
- Radiative heating and cooling


Earth Energy Balance

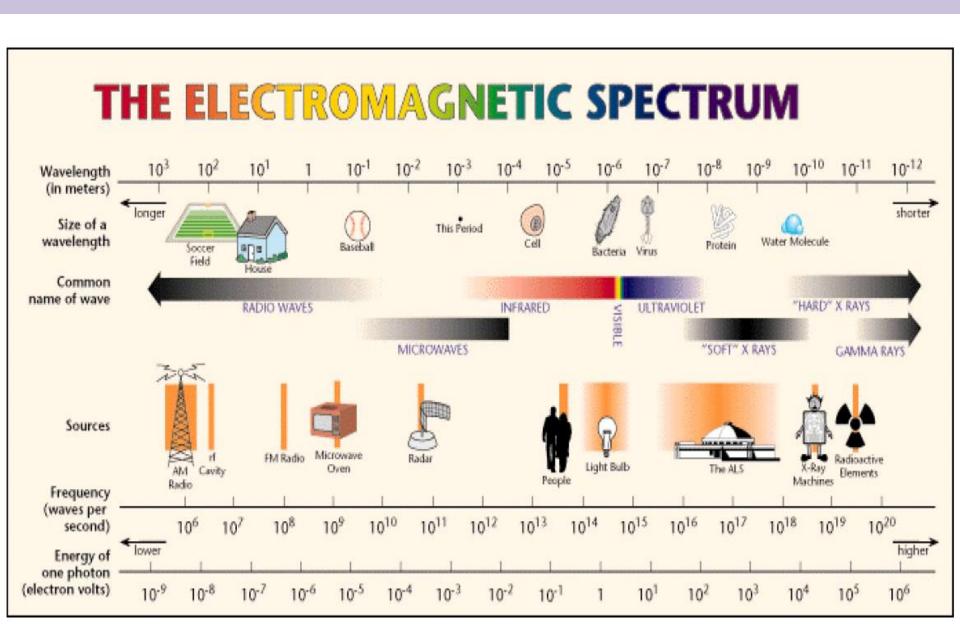
IPCC, 2021

- Energy balance: Atmosphere 80+(398-40)+21+82-342-(239-40), Surface 160+342-398-21-82, Earth 340-100-239
- Planetary albedo: \sim 29% (surface 7%, atmosphere 22%)

Radiation: An Effective Way of Energy Transfer

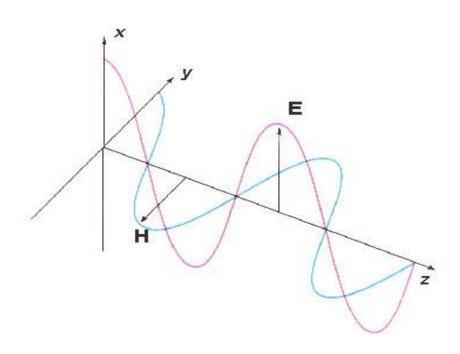

Thermal Radiation

地球<u>长波</u>辐射能量集中在波长10 μm附近



Electromagnetic Radiation Spectrum 电磁波谱

手机、微波炉: ~1GHz, 0.3m


Radiation and Sources

大气科学相关的电磁波

Name of	Wavelength	Spectral equivalence
spectral	region, µm	
region		
Solar	0.1 - 4	Ultraviolet + Visible + Near infrared = Shortwave
Terrestrial	4 - 100	Far infrared = Longwave
Infrared	0.7 – 100	Near infrared + Far infrared
Ultraviolet	0.1 – 0.4	Near ultraviolet + Far ultraviolet =
		UV-A + UV-B + UV-C + Far ultraviolet
Shortwave	0.1 - 4	Solar = Near infrared + Visible + Ultraviolet
Longwave	4 - 100	Terrestrial = Far infrared
Visible	0.4 – 0.7	Shortwave - Near infrared - Ultraviolet
Near infrared	0.7 – 4	Solar - Visible - Ultraviolet =
		Infrared - Far infrared
Far infrared	4 - 100	Terrestrial = Longwave = Infrared - Near infrared
Thermal	4 - 100	Terrestrial = Longwave = Far infrared
	(up to 1000)	
Microwave	$10^3 - 10^6$	Microwave
Radio	> 10 ⁶	Radio

电磁波:一种电场和磁场的交变波动

- A schematic view of an electromagnetic wave propagating along the z axis.
- Electromagnetic radiation has the dual nature:
 - its exhibits wave properties and particulate properties.

Poynting Vector 能流密度适量

$$S = E \times H$$

S is energy per unit time per unit area (e.g., W m⁻²)

E is electric field (unit: Volt/meter or Newton/Coulomb)

H is magnetic field (unit: ampere/meter)

In a propagating sinusoidal linearly polarized electromagnetic plane wave of a fixed frequency:

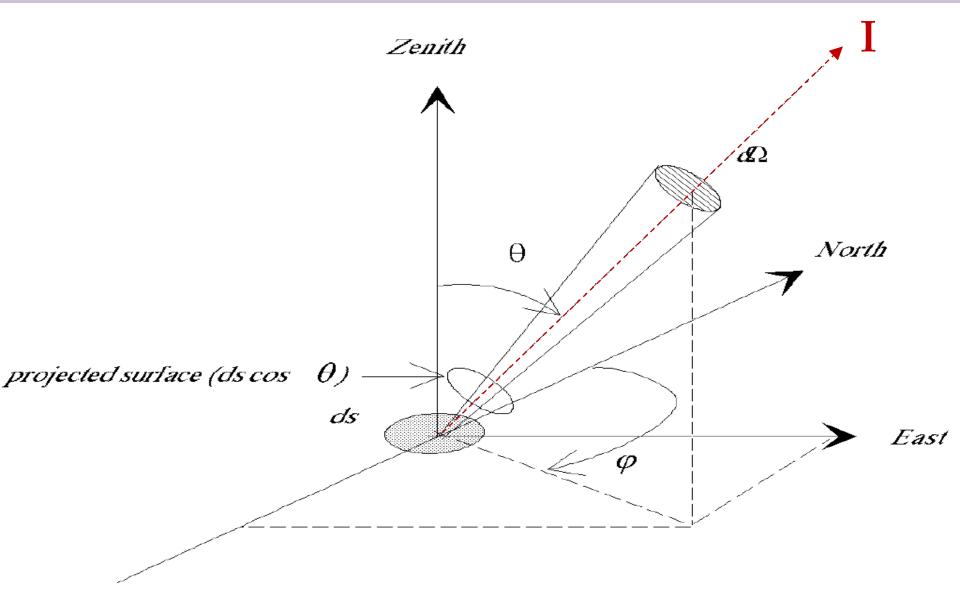
$$\langle S \rangle = \frac{1}{\eta} \cdot |E_m|^2$$

 $E_{\rm m}$ is the complex amplitude of the electric field η is the characteristic impedance of the transmission medium, or just $\eta_0 \approx 377\Omega$ for a plane wave in free space

Basic Concepts of Radiation

电磁波可以用角频率(angular frequency, ω)、频率 (frequency, f)、波长(wavelength, λ)、波数 (wavenumber, ν)和波速(speed, V)来描述

$$\omega = 2\pi f$$


$$V = f\lambda \qquad df = ? d\lambda$$

$$v = 1/\lambda = f/V \qquad dv = ? d\lambda$$

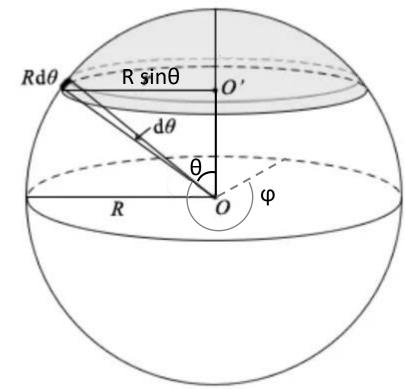
波数变化1 cm-1时,对应的波长变化:

- ✓ 在1000 cm⁻¹ (10 µm) 处: 10 nm
- ✓ 在10000 cm⁻¹ (1 µm) 处: 0.1 nm

Radiance or Intensity: (分光)辐亮度

Radiance or Intensity: (分光)辐亮度

> Radiance is a 7-dimensional variable


$$I(t; x, y, z; \lambda; \Omega) = I(t; x, y, z; \lambda; \theta, \varphi)$$

- ➤ Radiance can be measured by photometer 光度计
- Monochromatic energy per unit time per unit area per solid angle

$$I = dQ/dt/dA/d\lambda/d\Omega = dQ/dt/dA/d\lambda/(\sin\theta \, d\theta d\varphi)$$

Unit: w/m²/ μ m/sr, where sr = steradian 立体弧度 Ω = Solid angle 立体角, $d\Omega$ = $\sin\theta \ d\theta d\phi$

Calculation of Solid Angle

球面面积元

$$dS = R^2 d\Omega = R^2 \sin\theta \, d\theta d\varphi$$

球表
面积
$$S = \oint_{\Omega} dS = \int_{\theta=0}^{\pi} \int_{\varphi=0}^{2\pi} R \cdot \sin\theta \, d\varphi \cdot R \, d\theta = 4\pi \, R^2$$

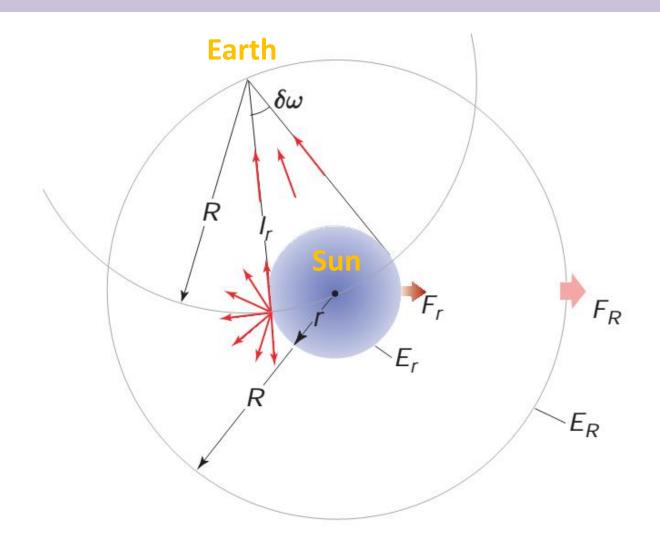
全空间 立体角

$$\oint_{\Omega} d\Omega = \int_{\theta=0}^{\pi} \int_{\varphi=0}^{2\pi} \sin\theta \, d\varphi \cdot d\theta = 4\pi$$

Radiance v.s. Flux Density

➤ Flux Density or Irradiance(分光)辐射通量密度:

$$F_{\lambda} = \int_{\Omega} I_{\lambda} \cdot \cos \theta \cdot d\Omega = \int_{\theta} \int_{\varphi} I_{\lambda} \cdot \cos \theta \cdot \sin \theta \, d\varphi \cdot d\theta$$


➤ Within a range of wavelength:

$$F_{\lambda_1,\lambda_2} = \int_{\lambda_1}^{\lambda_2} F_{\lambda} \cdot d\lambda$$

平行光?

> F decreases with R²

Solar Radiance and Irradiance

对所有波长积分后, $I_s = 2.00 \times 10^7 \text{ W m}^{-2} \text{ sr}^{-1}$

(电磁)辐射源,点源和面源

- > 往外发射辐射的物体称为辐射源。
- 最简单的辐射源是点源,这是一种理想的情况,即其几何尺度可以被忽略。
- 面辐射源向 2π 立体角中发射辐射能。我们绝大部分时间遇到的都是这种源。对面辐射源首先关心的是其出射的辐射通量密度 (辐出度),即单位时间内通过单位面积在面的法线方向射出的能量有多少。

Lambertian Surface (朗伯面)

在大气科学问题的讨论中我们常常用到朗伯面,其 定义是该表面向所有方向发出(作为光源)或者反 射出(作为反射物)均一的亮度 *I*

$$F = \int_0^{2\pi} I \cos \theta \, d\Omega = I \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \cos \theta \sin \theta \, d\theta d\phi = \pi I$$

吸收、反射、透射

- ▶ 入射至物体的辐射能,一部分会被物体吸收变为物体的内能或其它形式的能量,一部份会被反射回去,而另一部分则会透过物体。
- \triangleright 投射到物体的辐射能为 Q_0 ,其中部分被吸收 Q_a 、部分被反射 Q_r 、部分被透射 Q_t 。根据能量守恒:

$$Q_0 = Q_a + Q_r + Q_t$$

ightharpoonup 定义: 吸收率 $A = Q_a / Q_0$,反射率 $R = Q_r / Q_0$,透射率 $T = Q_t / Q_0$,则:

$$A + R + T = 1$$

➤ A、R、T与波长有关!

黑体和灰体

- \triangleright 绝对黑体:对任何波长的辐射都能全部吸收,即A=1。相应的必有R=0, T=0。
- ▶ 绝对黑体在自然界是不存在的,但在实验室可以人工制造 出尽可能接近于绝对黑体的表面。
- \triangleright 如果物体仅对某一波长有 $A_{i}=1$,则称该物体对这一波长为黑体。

【2014年,英国的萨里纳米系统公司(Surrey Nanosystems) 推出了一种全新材料Vantablack,对于特定波长(750nm) 的吸收率达到创纪录的99.965%】

- \triangleright 如果物体的<mark>吸收率A 不随波长而变,但A < 1,则称该物体为灰体。</mark>
- ➤ 黑体 v.s. 黑色物体? 冰雪?

热力学平衡、热平衡、温度

- 热力学平衡: 热平衡、力平衡、辐射平衡、化学平衡
- 孤立系统的热平衡:孤立系统内部无净热交换。可以用一态函数"温度"来描述。
- 局地(准)热平衡:局地孤立系统内部达到热平衡的时间远小于与外界作用的时间,因此系统内部有一个近似一致的温度。这一温度可以受到外界影响而随时间变化。
- 对流层和平流层大气可视为处于局地(准)热平衡状态,因此可以应用热平衡辐射的规律来研究其大气辐射问题。
- ▶ 如何理解"全球平均温度"、"体温"?

基尔霍夫(热辐射)定律

- ▶ 基尔霍夫在1859年由热力学定律论证指出:
 - 在一定的温度 T 时,任何处于热力学平衡的物体的辐亮度 $I_{\lambda,T}$ 和它的吸收率 $A_{\lambda,T}$ 之比值是一个普适函数 $B(\lambda,T)$ 。
- B (λ,T) 只是温度和波长的函数,而与物体的其他性质无直接关系

$$\frac{I_{\lambda,T}}{A_{\lambda,T}} = B(\lambda,T) \qquad \qquad \varepsilon(\lambda,T) = \frac{I_{\lambda,T}}{B(\lambda,T)} = A_{\lambda,T}$$

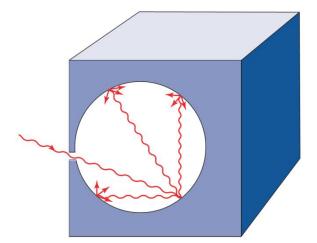
发射率 = 吸收率

普朗克定律(绝对黑体辐射)

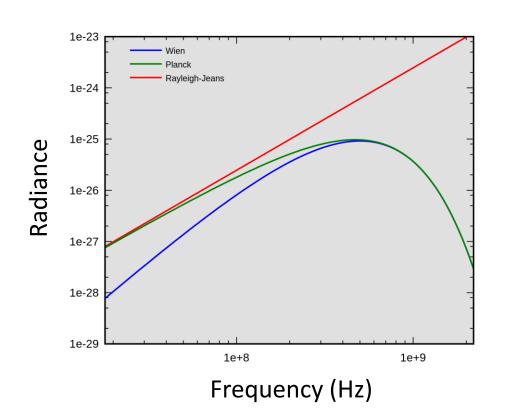
1900年, 普朗克引入量子概念, 得到:

$$B(\lambda, T) = \frac{2c^{2}h}{\lambda^{5}} \left(e^{\frac{ch}{k\lambda T}} - 1 \right)^{-1} = \frac{c_{1}}{\lambda^{5}} \left(e^{\frac{c_{2}}{\lambda T}} - 1 \right)^{-1}$$

$$c_{1} = 2c^{2}h = 1.19 \times 10^{8} W \mu m^{4} m^{-2} sr^{-1}$$


$$c_{2} = \frac{ch}{k} = 14388 \mu m K$$

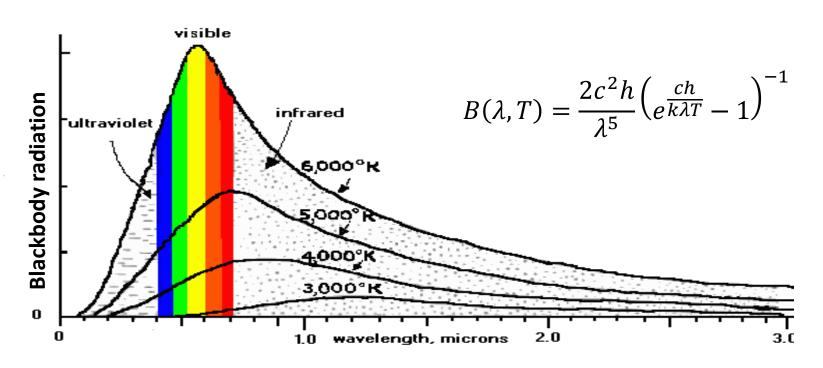
B (λ, T) 的单位为 W m⁻² μm⁻¹ sr⁻¹


c = 2.99793×10⁸ m s⁻¹,是真空光速

h = 6.6262×10⁻³⁴ J s, 是普朗克常数

 $k = 1.3806 \times 10^{-2} \text{ J K}^{-1}$,是波尔兹曼常数

普朗克定律、瑞利-金斯近似、维恩近似


Planck:

$$B(\lambda, T) = \frac{2c^2h}{\lambda^5} \left(e^{\frac{ch}{k\lambda T}} - 1 \right)^{-1}$$

R-J (1905):
$$B(\lambda, T) = \frac{2ckT}{\lambda^4}$$
$$\lambda \to \infty$$

Wien (1896):
$$B(\lambda, T) = \frac{2c^2h}{\lambda^5}e^{-\frac{ch}{k\lambda T}}$$

 $\lambda \to 0$

Blackbody Radiation

维恩位移定律(1879年)

$$\lambda_{max} = a/T$$
 $a = 2897.8 \ \mu m \ K$

斯蒂芬-玻尔兹曼定律(1893年)

(对所有波长积分)

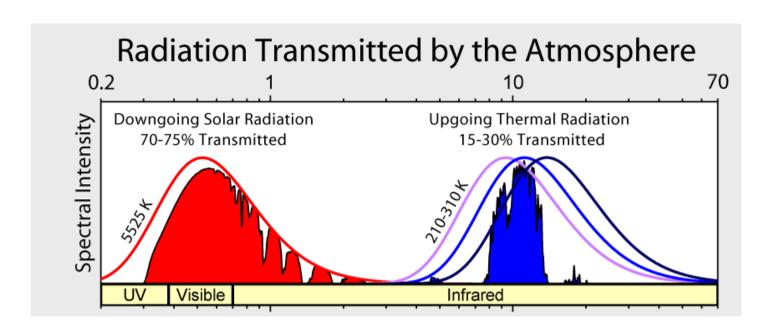
$$F = \pi B(T) = \sigma T^4$$

 $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
斯蒂芬-玻尔兹曼常数

Bose–Einstein integral
$$\int_0^\infty \frac{x^3}{e^x - 1} dx = \frac{\pi^4}{15}$$

$$\sigma = \frac{2k^4\pi^5}{15c^2h^3}$$

黑体辐射能量分布


$$B(\lambda,T) = \frac{2c^2h}{\lambda^5} \left(e^{\frac{ch}{k\lambda T}} - 1 \right)^{-1} = \frac{c_1}{\lambda^5} \left(e^{\frac{c_2}{\lambda T}} - 1 \right)^{-1}$$

Percen tile	0.01 %	0.1%	1%	10%	20%	25.0 %	30%	40%	41.8 %	50%	60%	64.6 %	70%	80%	90%	99%	99.9%	99.99%
λΤ (μm·K)	910	1110	1448	2195	2676	2898	3119	3582	3670	4107	4745	5099	5590	6864	9376	22884	51613	113374

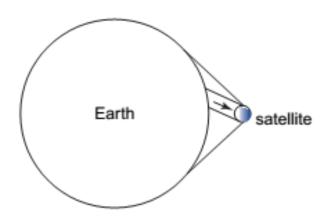
Percentile	0.01%	0.1%	1%	10%	20%	25.0%	30%	40%	41.8%	50%	60%	64.6%	70%	80%	90%	99%	99.9%	99.99%
Sun λ (nm)	157	192	251	380	463	502	540	620	635	711	821	882	967	1188	1623	3961	8933	19620
288 K planet λ (μm)	3.16	3.85	5.03	7.62	9.29	10.1	10.8	12.4	12.7	14.3	16.5	17.7	19.4	23.8	32.6	79.5	179	394

太阳辐射和地球辐射

- ▶ 太阳表面的温度为 6000K, 其辐射能量集中在 0.1 μm至 4.0 μm之间。
- ▶ 地球大气的温度约 300K, 其辐射能量主要集中在 4 μm 至 100 μm之间。
- ▶ 在大气上界,净入射的太阳长波辐射通量约 3 Wm⁻²,而地球净出射的长波辐射通量约 240 Wm⁻²。
- ▶ 6000K 黑体表面的辐亮度都远大于300K的黑体,但是在TOA处:

思考题

普朗克定律可以以波长 λ 、频率 f 或者波数 ν 形式来表达:


$$B(\lambda, T) = \frac{2c^2h}{\lambda^5} \left(e^{\frac{ch}{k\lambda T}} - 1 \right)^{-1}$$

$$B(f,T) = \frac{2f^3h}{c^2} \left(e^{\frac{\widetilde{\nu}h}{kT}} - 1\right)^{-1}$$

$$B(\nu,T) = 2\nu^3 c^2 h \left(e^{\frac{\nu ch}{kT}} - 1\right)^{-1}$$

- A. 从波长形式推导其他两种形式
- B. 当普朗克函数用波长、频率、波数表达时,都会得到一个极值点。若把极值点对应的波长、频率、波数都转换成对应的波长,这3个波长是否相等?

思考题

- A. A small, perfectly black, spherical satellite is in orbit around the Earth at an altitude of 2000 km. What angle does the Earth subtend when viewed from the satellite?
- B. If the Earth radiates as a blackbody at an equivalent blackbody temperature Te = 255 K, calculate the radiative equilibrium temperature of the satellite when it is in the Earth's shadow.

Michael Wallace book

斯蒂芬-玻尔兹曼定律和维恩位移定律

▶ 从普朗克定律导出:

斯蒂芬-玻尔兹曼定律 (对所有波长积分)

$$F_T = \sigma T^4$$

1893年

$$\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$$

斯蒂芬-玻尔兹曼常数

维恩位移定律

(以波长形式表达的黑体辐射峰值所对应的波长)

$$\lambda_{max} = a/T$$

1879年

 $a = 2897.8 \mu m K$