Equilibrium Climate
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Derive a relationship for the height of a given pressure surface
(p) In terms of the pressure,jand temperature Jat sea level,
assuming that the temperature decreases uniformly with

height at a rate of K km?
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This is the basis for the calibration of aircraft altimeters
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Liftingall assumptions for air parcel, except that the
environment is still in hydrostatequilibrium.

(@Show that when a parcel o f
moves adiabatically in ambient air with temperature T, the

temperature lapse rate of the air parcel is given by
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(b) Explain why the lapse rate in this case differs from the dry
adiabatic lapse rate (g/)
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A Assuming the truth of the second law of
thermodynamics, prove that an isolated ideal gas can
expand spontaneously (e.g., into a vacuum) but cannot
contract spontaneously

A One kilogram of ice at € is placed in an isolated
container with 1 kg of water at 1€ and 1 atm. (a) How
much of the ice melts? (b) What change is there Iin the
entropy of the universe dut the melting of the ice?
(specific heat of water is 4218 3 kg?)



By differentiating the enthalpy function (h = u a)pshow that
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where s is entropy. o <T 0’> 1w <T w)

Show that this is equivalent to tHelausiusClapeyrorEquation.

Thi s 1 s one of t he Maxwel |l ' s



Radiative Equilibrium Temperature: Vertical Structure

Radiative equilibrium for stratified atmosphere:
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Assuming no extinction of solar radiation by atmosphere
So, solar radiation flux (downward is negative):
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pj T for global mean annual mean
o] “ for tropicalmean annual mean
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Radiative Equilibrium Temperature: Vertical Structure

For radiative transfer of thermal radiation flux for
stratified atmosphere with no scattering:
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Radiative Equilibrium Temperature: Vertical Structure

Solution: Boundary conditions:
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In many cases (e.g., CO,): f(@ T ¢& 1) H:scale height

Thus:










The Emission Level

At the emission level Vw
black body emission is equal to planetary emission
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The Chapman Layer

From the thermal radiance equation (assuming t, >> 1):
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The Chapman Layer

Mean value theorem for thermal radiation flux:
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the kernel function for flux to space peaks at the emission level
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Re-arrange the kernel function:

L (VRPN
Ad ow (@ ww

Where
1 4 (V4 \ p
o ww o0
T(a ( )
’(‘) Q




Semi-gray model: Given that:
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Climate Sensitivity with No Feedbacks other than Planck’s
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Current atmosphere,

Climate sensitivity is small:
CO, and H,0 only:
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Water Vapor Feedback

ClausiugClapeyron Equation

Atconstant PO pX2 D
airpressure ) '0°Y Q'OY ‘Y'Y

Equilibrium (saturation) water vapor mixing ratio near the
surface will increase by 7.2% for every 1 K increase in

temperature around 273 K, that is,

Z: yWill double for every 10 K increase in JI
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Climate Sensitivity with Water Vapor Feedback

If surface RH and vertical profile of water vapor are unchanged:
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We st AH,0 feedback greatly
get. 'y ot enhances climate
17 : | AW OT— sensitivity

AIPCC ARG estimate:
574|| g L for2x[CO,] 2.5-4.0 K (likely range)
ARunaway greenhouse
effect?
Where:
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Linking OLR and Near-Surface Temperature
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Effects of Clouds

ALow clouds (< 4 km): changes albedo
AHigh clouds (~ 8 km): changes albedo and emission layer height

a,km 7Y, K a, km Y, K YV, K

High

couds 912 S 302 0.3 38 307 +5

Low

cdouds 912 S 302 0.7 S} 234 -68
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Energy Balance Climate Models: Meridional Change
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A = Surface albedo
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Energy Balance Climate Models

Albedo:
A lce or snow: A=0.6T,<-10C
A Ocean or land surface: A = 0.3T1,>-10C

_J
Steady state ( |I ), and no dynamical term (D = 0):
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X represents ice/snow line (whefg=-10 Q
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Energy Balance Climate Models

Temperature as a function of latitude  Position of the ice line as a function of insolation

Hysteresis IRFFINER :
The dependence of the output of a system not only on its
current input, but also on its history of past inputs




V For a planet similar to the Earth but with no water,
how would its surface temperature and air
temperature be like? Consider a tviomx model under
energy balance.

V Why is there a lapse rate feedback? What are the
causes of the meridional dependence of this feedback?

V How would surface temperature, air temperature and
water vapor change if anthropogenic greenhouse gas
concentrations continue to increase? Runaway
greenhouse effect?
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