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Abstract
Ozone pollution is a major transboundary threat to global health. Systematic improvement of
mitigation strategy for transboundary ozone requires a socioeconomic understanding of historical
lessons in countries at different affluence levels. Here, we explore the changes in transboundary
ozone related premature deaths over 1951–2019 driven by anthropogenic emissions of four
country groups categorized by income level. By integrating global emission datasets, a chemical
transport model (GEOS-Chem), in situ ozone measurements worldwide and an ozone
exposure-response model, we find that mortality caused by transboundary anthropogenic ozone
increases by 27 times from 1951 to 2019, and on average contributes about 27% of global
anthropogenic ozone related deaths. All groups exert and suffer from substantial transboundary
ozone related mortality. The high-income and upper middle groups have each experienced an
inverted U-shaped relationship between its affluence and per-million-people contribution to
mortality caused by transboundary ozone, with the turning point around 23 000 USD and 6300
USD, respectively. The lower middle group has gradually matched the growth pathway of the upper
middle group with a turning point less clear. Concerted efforts to ensure early turning points in
less affluent countries will have considerable global health benefits.

1. Introduction

Ozone in the surface air is estimated to cause hun-
dreds of thousands of premature deaths each year
through worsening respiratory and cardiovascular
diseases [1–10]. Formed from emitted precursor
gases such as nitrogen oxides (NOx) and non-
methane volatile organic compounds (NMVOCs)
through highly nonlinear photochemistry, with a
tropospheric lifetime of a few weeks, ozone can
be transported long distances to other regions to

exert transboundary impacts [11, 12]. Despite dec-
ades of mitigation efforts especially in developed
regions, ozone remains a major transboundary
pollutant [11–14]. Attempts to systematically
improve strategies for transboundary ozone control
in the future must learn from common lessons in
the past. Historically, changes in regional anthropo-
genic emissions of ozone precursors are determined
by energy consumption [15–17], energy structure
[18], technology and emission control levels [19, 20],
which are related to affluence level (indicated here
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by per capita gross domestic product, GDP). Yet it
remains unclear how regional affluence is linked to
its contribution to mortality associated with trans-
boundary ozone.

Previous works have attempted to link regional
environmental issues to its affluence level, usually
based on local empirical data [17, 21–24]. A few stud-
ies have connected regional affluence levels to their
anthropogenic ozone-related emissions [17, 22–24].
However, emission-based assessments do not take
into account the strong nonlinear ozone chemistry
[25, 26]–with NMVOC emissions fixed, increasing
NOx emissions enhances ozone formation in the
NOx-limited chemical regime but decreases ozone in
the NOx-saturated regime [27]. Other studies have
linked regional affluence level to its ambient ozone
pollution [28–30], with an implicit assumption that
ozone is fully derived from local precursor emissions.
These studies do not isolate the impacts of trans-
boundary ozone originating outside that region’s ter-
ritory. For example, Asia is an important source
region of ozone over North America, and vice versus
[11, 12, 14, 31, 32]. The long-distance transbound-
ary ozone means that ozone concentrations world-
wide contributed by a region’s emissions (as a source)
differ from ozone concentrations over that region’s
territory (as a receptor). In addition to the complex
ozone chemistry [27] and transboundary transport
[11, 12], the health response to ozone exposure may
be nonlinear [3]. To date, a global-scale assessment of
the potential connection between each region’s trans-
boundary ozone related health impact and its afflu-
ence level is lacking.

In this study, from a historical perspective, we
quantify the impacts of regional anthropogenic emis-
sions on global ozone-related premature mortality
over 1951–2019, explore the role of transbound-
ary pollution, and then reveal the linkage between
regional transboundary impact and its affluence level.
All countries are aggregated into four groups as
emission source regions based on their per cap-
ita gross national income (GNI), as defined by the
United Nations [33]. These groups include high-
income (i.e. developed regions; with GNI per cap-
ita more than $12 235), upper middle income (e.g.
China and Russia; with GNI per capita between
$3956 and $12 235), lower middle income (e.g. India
and Indonesia; with GNI per capita between $1006
and $3955) and low-income (GNI per capita less
than $1005); see supplementary figure 1 of our pre-
vious study [34] for detailed regional disaggrega-
tion information. The classification of four groups is
fixed, to explore the historical transboundary ozone
related mortality impacts of country groups based on
current worldwide economy. We only consider the
impacts of emissions released in each group due to
its production, and do not account for the emissions
released in other groups associated with that group’s
consumption [35, 36].

2. Method and datasets

This section describes our methodology, datasets and
uncertainty estimates. Briefly, our study integrates
historical emission data from the Community
Emissions Data System (CEDS) [37] and the Multi-
resolution Emission Inventory for China (MEIC)
[20, 38–40], the chemical transport model GEOS-
Chem [41], in situ ozone measurements worldwide
and an ozone exposure-response model [3]. We
estimate the transboundary ozone related mortality
caused by anthropogenic emissions in each income
group for about every five year. We fix the meteor-
ological conditions of GEOS-Chem at the 2014 level
to focus on the sole impacts of anthropogenic emis-
sions (section 2.2); a sensitivity test shows that using
year-specificmeteorology has a small effect on ozone-
related mortality results (supplementary figure 1).
Simulated ozone concentrations by GEOS-Chem are
evaluated and adjusted based on historical surface
measurements (section 2.3). We employ Turner et al
[3] ozone exposure-response model to estimate pre-
mature deaths of adults (⩾30 yr old) caused by respir-
atory and circulatory diseases associated with long-
term exposure to ozone pollution. The model adopts
a low concentration cutoff (LCC) of 26.7 ppbv as
threshold below which ozone is assumed not to cause
mortality [3]; choosing 0 ppbv as the LCC instead
leads to a larger number of premature deaths and
a strengthened relationship between regional afflu-
ence and its ozone morality impact (supplementary
figure 2). Year-, country- and disease-specific baseline
mortality rates since 1990 are calculated based on
the Global Burden of Disease (GBD) 2019 database
[42], and the rates at 1990 are applied to precious
years [34]; a sensitivity test linearly extrapolating
the rates to earlier years, following previous works
[34, 43], shows slightly different mortality results
(by 2%–23% depending on the years, supplementary
figure 3).

2.1. Historical population and GDP data
The historical country-based GDP and population
data are obtained from the World Bank [44] for 264
regions, covering the period from 1960 to 2019. The
GDP data are expressed in constant 2010 USD.When
we calculate per capita GDP of each income group, we
do not consider a few small countries of which GDP
data in earlier years are missing.

To extend per capita GDPdata to 1951, we employ
exponential linear extrapolation. For each income
group, we calculate the growth rate of per capita GDP
from1960 to 1970 (equation (1)), and then extend the
group-based per capita GDP to 1951 (equation (2))

δi =
ln
(
Gi,t2
p

)
− ln

(
Gi,t1
p

)
t2− t1

(1)

ln
(
Gi,t
p

)
= δi ∗ (t− t1)+ ln
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p

)
. (2)
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Gi,t
p represents per capita GDP of country group

i (high-income, upper middle income, lower middle
income, or low-income) in the year t. The subscript p
represents per capita. t1 denotes the year of 1960 and
t2 the year of 1970. δi represents the growth rate of
per capita GDP of group i.

2.2. GEOS-Chemmodel simulations
A global chemical transport model GEOS-Chem ver-
sion 11-01 [41] is employed in this study, to estim-
ate the global ozone concentrations about every five
years, including 1951, 1955, 1960, 1965, 1970, 1975,
1980, 1985, 1990, 1995, 2000, 2005, 2010, 2014 and
2019. All simulations cover 18 months, with the first
six months used for model spin-up (e.g. the sim-
ulation for 2014 covers July 2013 through Decem-
ber 2014). The model setup follows our previous
study [34]. Briefly, all simulations are driven by the
MERRA2 assimilated meteorology provided by the
NASA Global Modeling and Assimilation Office. The
meteorological data are fixed in 2014 to quantify
the sole impact of anthropogenic emissions. Supple-
mentary figure 1 shows the mortality results using
year-specific meteorology for 1981, which are similar
to those using 2014 meteorology. The model is run
with the full Ox-NOx-VOC-CO-HOx gaseous chem-
istry, and aerosols are online calculated. The hori-
zontal resolution is 2.5◦ longitude × 2◦ latitude grid
with 47 vertical layers. Uptake of the hydroperoxyl
radical (HO2) on aerosols is accounted for with an
uptake coefficient of 0.2, following previous works
[14, 45]. Vertical mixing of planetary boundary layer
follows Lin and McElroy [46] Model convection uses
the relaxed Arakawa-Schubert scheme [47]. Strato-
spheric ozone follows the Linoz scheme [48].

We use monthly gridded (0.5◦ longitude × 0.5◦

latitude)CEDSdata fromHoesly et al [37] for gaseous
(NOx, NMVOC, SO2, NH3) and primary aerosol (BC
and POA) pollutants globally over 1951–2014. CEDS

emissions over China are replaced by emissions from
MEIC [20, 38–40] since the year of 2000, because
CEDS does not well represent the changes in Chinese
emissions. Then we employ the country- and species-
specific temporal changes over 2015–2019 in emis-
sion data fromMcDuffie et al [49] to derive the emis-
sions over 1951–2019. NMVOC and NOx emissions
of four groups are shown in supplementary figure 4.
Supplementary material S1 and table S1 of our pre-
vious study [34] details more emission information,
such as natural emission, international shipping and
aviation emission inventories.

In each of the simulation years, we have six
types of full-chemistry simulations to quantify sur-
face ozone concentrations worldwide contributed
by anthropogenic emissions of each country group.
The control simulation (CTL) includes all anthro-
pogenic emissions worldwide. Five sensitivity simu-
lations zero out anthropogenic emissions worldwide
and in four country groups group by group, includ-
ing xANTH, xHIGH, xUPPER, xLOWER and xLOW.
The difference between CTL and xHIGH represents
the contribution of ozone by the high-income group,
after the results are further adjusted to account for the
nonlinear issue in ozone attribution (see below). The
contributions of other groups are estimated in a sim-
ilar way. International shipping emissions, aviation
emissions and natural emissions are all included in
xANTH simulations; we refer this part contribution
as ‘natural contribution’.

Considering the nonlinear relationship between
ozone production and its precursors, we apply a linear
weighted method to the model outputs on an hourly
basis following a previous study [14]. For example,
for the anthropogenic contribution of high-income
group in each hour and grid cell, we first obtain
the fraction of ozone contribution by this group
to the total ozone summed based on the zero-out
simulations:

f HIGH =
CTL− xHIGH

[CTL− xHIGH] + [CTL− xUPPER] + [CTL− xLOWER] + [CTL− xLOW] + xANTH
. (3)

We then obtain the adjusted ozone contribution
caused by the high-income group by applying f HIGH

to the total surface ozone in CTL:

HIGH= f HIGH ×CTL. (4)

Contributions of other groups are obtained sim-
ilarly. The adjusted natural ozone is as follows:

NATURE=
xANTH

[CTL− xHIGH] + [CTL− xUPPER] + [CTL− xLOWER] + [CTL− xLOW] + xANTH
×CTL.

(5)
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2.3. GEOS-Chem evaluation and adjustment
We use ground-level ozone measurements worldwide
to adjust for the effect of systematic model biases on
our regional ozone attribution and health calculation.
Hourly measurements in 2014 are taken from 1306
Environmental Protection Agency Air Quality System
sites [50] for the US, from 216 sites of the National
Air Pollution Surveillance program [51] for Canada,
from 137 sites of European Monitoring and Eval-
uation Programme Chemical Coordination Centre
network [52] for Europe, and from 945 sites of China
National Environmental Monitoring Centre [53] for
China. These data have been widely used for air qual-
ity assessment and other applications [54–56].

Since we use annual average daily maximum 8 h
average (MDA8) ozone for health impact assess-
ment (section 2.4), we further process the measure-
ment data accordingly to facilitate comparisons with
GEOS-Chem results. We convert the Chinese meas-
urements from the original unit of µg m−3 at the
standard condition (273.15 K and 1 atm) to mixing
ratio (in ppbv). We further apply data quality con-
trol on all raw datasets, following a previous study
[54]. We then convert the hourly data to MDA8, by
calculating 8 h averages for 24 bins starting at 00:00
local time, and choose the highest of these 24 values.
If there are less than six valid ozone values among
each 8 h bin, the corresponding 8 h average value is
considered missing. If there are two or more 8 h aver-
age values that are missing in a day, the correspond-
ing MDA8 is considered missing. Lastly, we map all
MDA8 data on a 2.5◦ longitude × 2.0◦ latitude grid
for each day, with available data at all sites within a
grid cell averaged to obtain the griddedMDA8 ozone.

We evaluate the annual average MDA8 ozone res-
ults of the CTL simulation. We first calculate the
model MDA8 for each day and grid cell, and then
select the model data only on days and in grid cells
when the measured MDA8 data are available. As
shown in the two columns on the left of supple-
mentary figure 5, the CTL simulation overestimates
the observed annual average MDA8 over China (by
9.8 ppbv on average), the US (by 8.9 ppbv), Europe
(by 1.3 ppbv) and Canada (by 3.9 ppbv).

To remove the systematic model bias, we take a
scaling approach in which a scaling factor (as the ratio
of observed to CTL modeled annual mean MDA8
ozone) is derived for each range of population dens-
ity (separated by yellow vertical lines in supplement-
ary figure 6(a)). This population density-specific cor-
rection is used to facilitate the subsequent health
impact calculations. It improves upon the approach
by Shindell et al [2] that uses a single scaling factor
for the whole globe. Here the scaling factors are
derived as the average of the observed to modeled
ratios in each population range, after combining
all data in China, the US and Europe. Population
data on a 0.1◦ × 0.1◦ grid are taken from GBD
2016 [57] health data and re-gridded to the model

resolution (2.5◦ longitude× 2.0◦ latitude). Gener-
ally, the (observed to modeled) ratios are less than 1
and tend to decreasewith increasing population dens-
ity. The scatter in the ratios reflects local characterist-
ics not captured by the model simulation.

Although not used for scaling the model results,
the ratios derived based on data in each region are
shown separately in supplementary figures 6(b)–(d)
for comparison. Both the US-based and China-based
ratios (supplementary figures 6(b) and (c)) are close
to the ratios based on all data in the US, China
and Europe together (supplementary figure 6(a)),
although the Europe-based ratios tend to be larger
reflecting the smaller model biases over Europe.

We apply the three-country based ratios (sup-
plementary figure 6(a)) to the whole globe. After
scaling, the modeled population-weighted global
annual average MDA8 ozone (37.6 ppbv) matches
the observed value (37.9 ppbv) (supplementary table
1). Supplementary figure 5 (the two columns on the
right) further shows that the scaling greatly reduces
the model overestimation at individual grid cells.
After scaling, the model bias is 1.3 ppbv averaged
over China, 2.6 ppbv over the US, −4.2 ppbv over
Europe, and −0.5 ppbv over Canada. The small
bias for Canada indicates the robustness of our scal-
ing approach, because the scaling factors are not
derived based on Canadian measurements. To fur-
ther test the robustness of our scaling approach over
time, we employ the surface measurements over US
and Europe in 2000. The results show our scaling
approach effectively adjusts the modeled ozone to a
small mean bias of 1.1 ppbv and−5.5 ppbv.

We then apply the scaling factors to all simula-
tion years. For 1980 and earlier years when gridded
GBD2016 population data are not available, we com-
bine the gridded GBD2016 population data in 1990
with the historical country-based population time
series from ‘World Population Prospects’ [58].

We further quantify the capability ofGEOS-Chem
in simulating the historical background ozone con-
centrations. For this purpose, we employ long-term
ozone measurements at 12 background sites from
tropospheric ozone assessment report (TOAR) [59].
These sites are categorized as ‘background’ sites, have
records before 1980 and have data for at least five
years. Sites that are not included here do not satisfy
both criteria. Supplementary table 2 shows the geo-
graphical information of these sites. For these 12 sites,
maximum daily 8 h average data were averaged to
obtain monthly mean values. When we calculate the
annual means, the corresponding simulated monthly
values are set as missing if the observed monthly ones
are missing. Given the scarcity of historical measure-
ment data, for each site we averaged all yearly mean
measurement data within ten year of each simula-
tion year (1951, 1960, 1970, 1980, etc) to match the
respective model simulation. Model values are selec-
ted at the grid cell and height of each site. The scatter
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plots in supplementary figure 7 show that GEOS-
Chem reproduces the observed ozone both before and
after the population-based adjustment, with a low
bias and a slope close to 1 for each simulation year.

2.4. Premature mortality by ozone exposure
We use the pollution exposure-response relationship
by Turner et al [3] to calculate the impact of annual
average MDA8 ozone on premature mortality. This
relationship is an update from Jerrett et al [60], and
it has been widely used [1, 2, 5, 61]. For premature
mortality caused by each of respiratory and circulat-
ory (including diabetes) diseases:

Mg = bg ×
(
1− e−β∆Og

)
× Pg (6)

β = lnH/10. (7)

Here, Mg represents the number of premature
deaths caused by each disease due to exposure to
annual average MDA8 ozone in grid cell g. The
global total mortality is summed over all grid cells. bg
denotes the disease-specific gridded baseline mortal-
ity rate for people⩾30 yr old, i.e. the fraction of total
deaths caused by each disease. Pg denotes the num-
ber of people ⩾30 yr old exposed to ozone at grid
cell g. The country-, year- and age-specific population
data are from the ‘World Population Prospects’ [58],
and the gridded total population data are from GBD
2016 database [57]. The country-based age structure
is applied to each grid cell within that country. The
country-, disease-, age- and year-specific premature
death data are from GBD 2019 data resources [42].
The baseline mortality rate of a country is calculated
based on its population and mortality data, and is
applied to all grid cells within that country. Since
the GBD 2016 database provides mortality data since
1990, we apply the baseline mortality rates in 1990 to
prior years.

β is the effect coefficient to present the associ-
ation between annual average MDA8 ozone exposure
and disease-specific premature mortality. It repres-
ents the natural logarithm of the Hazard Ratio (HR)
for a 10 ppbv increase in ozone exposure. Accord-
ing to Turner et al [3], the circulatory (including dia-
betes) HR has a value of 1.03 (95% CI: 1.01–1.05),
and the respiratory HR has a value of 1.12 (95% CI:
1.08–1.12).

∆Og is the difference between the GEOS-Chem
simulated and bias-corrected annual average MDA8
ozone concentration and an LCC (low-concentration
cutoff). Below the LCC, ozone is assumed to have no
effect on mortality. We use choose an LCC value of
26.7 ppbv in themain analysis [3], following previous
studies [1, 2].

A previous study [62] shows that at there is no sig-
nificant difference in ozone-related health impacts at
lower end of observed exposures compared to those
at higher exposures. Therefore, we also include health

impact estimation without an exposure threshold,
that is, choosing 0 ppbv as the LCC instead. The
results are shown in supplementary figure 2. Ozone
pollution caused by anthropogenic emissions drops
below the LCC decades ago, which leads to a sharp
decrease of ozone-related premature deaths, such
as the sharp change of mortality impacts of upper
middle group with its per capita GDP around $1000
as shown in figure 4(a). Choosing 0 ppbv as the LCC
narrows the change in the per-million-people contri-
butions to mortality impact of upper middle group
when its per capita GDP is around $1000 as shown
in supplementary figure 2. Therefore, not only the
number of premature deaths get larger, but also the
relationship between regional affluence and its ozone
mortality impacts gets strengthened.

For each year, we first calculate the total mortal-
ity (Mg) due to annual average MDA8 ozone from all
anthropogenic and natural sources (after ozone bias
corrected; equation (6).We then calculate the number
of deaths contributed by each income group by mul-
tiplying Mg by the fraction of ozone contributed by
that group. Equation (9) provides an example for the
high-income group. Mortality contributions of other
groups are obtained similarly. Such a direct propor-
tion approach has been used inmany previous studies
[34, 35, 63, 64]

Og =HIGHg +UPPERg + LOWERg + LOWg

+NATUREg (8)

MHIGH
g =

HIGHg

Og
×Mg. (9)

Supplementary figure 8 compares our global total
mortality results to other studies. The spread in mor-
tality outcomes reflects the large uncertainty in the
current knowledge of the ozone mortality impact.
Our results in 2010 are close to the recent study by
Shindell et al [2] (with ozone bias corrected and with
Turner et al [3] exposure-response function) on a
global total basis.

2.5. Decomposition of changes in ozone-related
mortality
Following our previous study [34], historical changes
in anthropogenic ozone-related mortality is decom-
posed into three factors, including baseline mortal-
ity rate (b), ozone-related term (T= 1− e−β∆O) and
exposed population (P), according to the calculation
formula in section 2.4.

The change in anthropogenic ozone-related mor-
tality between two simulation years (∆M) could be
expressed as:

∆M=∆b×T× P+ b×∆T× P+ b×T×∆P.
(10)

Contributions of one factor with the rest two kept
constant are denoted by three terms on the right-hand

5
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side. There are six possible decompositions of these
three terms, and the averaged decomposition results is
used in the main text. See more detailed information
in our previous study [34].

2.6. Uncertainty and limitation
This study is subject to uncertainties from a few
sources. First, the historical CEDS [37, 49] andMEIC
[20, 38–40] inventories used here contain errors ran-
ging from 10% to 170% depending on the pollut-
ant and region, which is further discussed in the
limitation discussion below. For our ozone simula-
tions and mortality impact estimates, there errors
are embedded in the derivation of the GEOS-Chem
model error (σ1).

Second, we use the bias between model sim-
ulation and measurements to represent the error
of GEOS-Chem, following previous studies [34, 63,
64]. Supplementary table 2 shows the mean relat-
ive model bias after bias adjustment over mainland
China, US, Europe, Canada and globe (combining
the four regions together). We use the relative bias
over Europe (−14.1%, theworst case) to represent the
overall model error. The error is referred to as σ1 (one
standard deviation).

Third, the ozone exposure-response model by
Turner et al [3] is subject to errors in linking pollu-
tion exposure, specific diseases and premature mor-
tality. We further discuss this as one limitation below.
As shown in section 2.4, we use the 95% CI of the
HR for respiratory and circulatory diseases to char-
acterize errors in the exposure-response model. The
overall error is about 30% and referred to as σ2 (one
standard deviation).

The overall uncertainty in the historical prema-
ture mortality calculation is estimated as the sum in
quadrature of σ1 and σ2. The majority of these error
terms do not change with time, thus the temporal
changes (in a relative sense) in mortality impacts are
less affected by these errors.

Besides the uncertainty sources mentioned
before, this study is subjected to several limita-
tions. First, the anthropogenic emission inventories
employed in this study tend to contain larger uncer-
tainties in the early years and over some less affluent
regions. Therefore, we use other two widely used
global anthropogenic emission inventories to explore
the linkage between regional affluence level and its
ozone precursors’ emissions. As shown in supple-
mentary figure 9, the patterns are similar to those in
figures 3(c) and (d).

Second, simulated ozone concentrations are all
obtained using GEOS-Chem. Although we have
employed global surface ozone observations and
long-term background ozone observations to valid-
ate and adjust the simulated results, further muti-
model analyses would be helpful to estimate the
intrinsic biases embedded in GEOS-Chem. Although
we conduct consistent quality control processes to

all raw observation datasets in this study, the mon-
itoring networks over different regions have differ-
ent internal quality control standards and internal
procedures [65, 66]. Besides, the surface ozone obser-
vations are lacking over less affluent regions [66]
(such as rural areas, and globally such as Africa),
which could potentially introduce classification error
when quantifying ozone exposures [67]. Therefore,
we call for improvement in observation metadata
reporting, more consistent monitoring procedures
in global monitoring networks and more studies
focusing on observations and emission datasets over
less affluent regions in future to better quantify the
uncertainty.

Third, the application of ozone health model is
subjected to errors in the internal validity and the gen-
eralizability of the healthmodel [67–69]. A full evalu-
ation of this error is technically prohibitive [67]. Fol-
lowing previous studies [1, 2, 34], we estimate the
uncertainty ranges, and further conduct sensitivity
tests to better address its limitation. Besides the ozone
health model from Turner et al [3], we also employ
another risk function from Jerrett et al [60] to estim-
ate the ozone-related premature deaths with similar
results to a previous study [1] (supplementary figure
8). We chose 0 ppbv as LCC instead of 26.7 ppbv in
another test, which leads to a large number of ozone-
related premature deaths and a strengthened relation-
ship between regional affluence and its contribution
to mortality caused by transboundary ozone (sup-
plementary figure 2). The baseline mortality rates,
as the input datasets, are fixed at 1990 for earlier
years, due to data limitation. To test this correspond-
ing effect, we employ linear-extrapolated country-
based baseline mortality rates to earlier years and
find slightly different mortality results (supplement-
ary figure 3). Further ozone-related cohort stud-
ies based on various races, age groups and other
socio-economic conditions in future will help to
reveal more detailed in transboundary ozone related
mortality.

3. Results and discussion

3.1. Aggravating ozone health impact
Figure 1(a) shows the changes in global total prema-
ture mortality associated with anthropogenic ozone
between about every decade from 1951 to 2019;
detailed results for every five years are shown in sup-
plementary figure 10(a). The anthropogenic mortal-
ity grows significantly from 8.3 [95% CI: 4.1–12.5]
thousand in 1951–129.2 [95% CI: 58.4–199.9] thou-
sand in 1990 and to as large as 281.4 [95% CI: 124.0–
438.8] thousand in 2019. Between 1951 and 2019,
the global annual mortality attributable to anthropo-
genic ozone grows by a factor of 34. The premature
mortality caused by natural sources, which in 2019
is about 688.6 [95% CI: 303.4–1073.9] thousand and
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Figure 1. Rapid increase in global mortality caused by anthropogenic ozone. The y-axis shows the premature deaths attributable
to total ozone (a) and transboundary ozone (b) caused by anthropogenic emissions in four income groups. The wide bars with
dark colors indicate the mortality contributions by individual groups. The narrower bars with lighter colors indicate the
individual effects of changes in ozone, population and baseline mortality rate. The change in baseline mortality rate before 1990 is
not accounted for, due to limited data availability.

contribute about 71% of the total ozone-related mor-
tality, is not elaborated further in this study.

To better understand the drivers of the increase
in anthropogenic ozone mortality impact, we attrib-
ute the mortality growth to three factors using a
decomposition analysis (section 2.5). The three driv-
ing factors considered are ozone concentration, pop-
ulation, and baseline mortality rate. Globally, the
baseline mortality rate declines continuously as a res-
ult of improved medical and living conditions, based
on available data since 1990. However, the increasing
ozone concentration and population overcompensate

for the beneficial effect of declining baseline mortal-
ity rate and enhance the anthropogenic ozone health
burden. The worsening ozone exposure alone causes
a 16-fold increase in the total mortality increase from
1951 to 2019, and the population change causes a 24-
fold increase over the same period.

The mortality contribution by ozone from each
of the four groups has changed substantially over the
years. The high-income group contributes as much as
77% of the global total premature mortality in 1951.
In absolute terms, ozone from the high-income group
leads to 6.4 [95% CI: 2.7–10.1] thousand deaths in
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1951, 31.3 [95% CI: 13.1–49.4] thousand in 1980,
and 36.4 [95% CI: 15.5–57.4] thousand in 1990.
From 1980 to 1990, the ozone concentration con-
tributed by the high-income group declines with its
decreasing precursor emissions, but this effect is off-
set by the growth in global population exposed to
ozone pollution originating from the high-income
group. Although the mortality caused by the high-
income group declines from 1990 and 2010, there
is slight growth (by about 1%) from 2010 to 2019.
This resumption of mortality growth is primarily
because of worsened ozone pollution originating
from Europe through the nonlinear chemistry driven
by its decliningNOx emissions (supplementary figure
4(a)). The recent worsening European ozone pollu-
tion is also found by previous studies based on sur-
face measurements [56, 70–72]. The complex effects
of emissions on ozone concentrations and associated
mortality highlight the challenges to mitigate ozone
pollution.

For the other three groups, their impacts on global
ozone mortality have continued to increase since
1951, as a result of general increases in attributable
ozone concentration (due to increasing emissions,
supplementary figure 4) and population overcom-
pensating the effect of declining baseline mortality
rates. As an exception, the decreases in ozone expos-
ure caused by the upper middle and lower middle
income groups between 1990 and 2000 are due to sig-
nificant drop in emissions in many countries [37, 49]
which used to be parts of the Soviet Union. By 2019,
the premature deaths caused by the upper middle,
lower middle and low-income groups reach 94.9
[95%CI: 38.2–151.7] thousand, 150.4 [95%CI: 70.2–
230.6] thousand and 8.4 [95% CI: 4.0–12.9] thou-
sand, respectively. In other words, by 2019 the lower
middle group becomes the top contributor to annual
global premature mortality (53%), followed by the
upper middle (34%), high-income (10%) and low-
income group (3%).

3.2. Substantial mortality caused by
transboundary anthropogenic ozone
Figure 1(b) shows inter-decadal changes in annual
premature deaths attributable to transboundary
anthropogenic ozone (caused by four source groups
but occurring outside their territories) and contri-
butions from the three driving factors (ozone, pop-
ulation and baseline mortality rate) from 1951 to
2019. Results for every five years are shown in sup-
plementary figure 10(b). The mortality attributable
to transboundary anthropogenic ozone increases by
about 27 times from 2.1 [95% CI: 1.1–3.2] thousand
in 1951 to 59 [95% CI: 30–89] thousand in 2019.
The worsening ozone pollution alone leads to a 10-
fold increase, the rising population causes a 21-fold
increase, whereas the declining baseline mortality
rate slightly offsets these increases. Between 1951 and

2019, on average, premature deaths caused by trans-
boundary anthropogenic ozone account for about
27% of annual global anthropogenic ozone related
deaths.

Ozone originating from the high-income group
contributes as much as 84% of annual global mor-
tality caused by transboundary anthropogenic ozone
in 1951 and more than 50% before 1990. In abso-
lute terms, the annual contribution of high-income
group peaks in 1990 with 17.5 [95% CI: 9.0–26]
thousand deaths. The contributions from other three
groups increase continuously from 1951 to 2019. In
recent decades, the percent contributions of high-
income and low-income groups to mortality caused
by transboundary ozone are larger than their percent-
age contributions to total (local + transboundary)
mortality (figure 1(b) versus 1a). In 2019, the high-
income group contributes about 25.7% of deaths
caused by transboundary ozone (figure 1(b)) but only
10% of total ozone related deaths (figure 1(a)), and
the respective numbers for the low-income group are
10.5% and 3%. The contributions of upper middle
and lower middle groups are about 34.4% and 29.5%
in 2019, lower than their contributions to total deaths.

Figure 2 compares the transboundary impact
caused by and exerted upon each group, by contrast-
ing the ratio of deaths outside a region’s territory
and global deaths caused by that region (x-axis, as a
source) against the ratio of deaths in a region caused
by foreign pollution to that region’s total deaths
(y-axis, as receptor). The fractional transboundary
impacts both caused by and exerted upon the high-
income group are increasing over the past decades
to reach 0.6 and 0.3 in 2019, with the former (as a
source) always greater than the latter (as a receptor).
The fractional transboundary impacts caused by and
exerted upon the upper middle and lower middle
groups decline with time, as a result of their growing
local fractional contributions. The fractional impacts
for the low-income group remain at high values of
0.6–0.9 throughout the years, reflecting stable, strong
tie of its ozone problem with other groups.

Figure 3 shows the transboundary ozone related
mortality inter-impacts between the four groups, in
terms of the impact of everymillion people in a source
region, for every decade. Supplementary figure 11
presents detailed information for all simulation years.
In 1951, emissions of every one million people in the
high-income group cause 1.2 [95% CI: 0.5–1.9] pre-
mature deaths in the upper middle group and 1.3
[95% CI: 0.6–2.0] in the lower middle group. The
respective effects change to 9.9 [95% CI: 4.0–15.8]
and 7.5 [95% CI: 3.6–11.5] in 1990 and 6.7 [95%
CI: 2.5–10.8] and 6.3 [95% CI: 2.8–9.8] in 2019.
These values are comparable to (over 1960–1975) or
even higher than (in 1951) the self-impacts of upper
middle and lower middle groups.

Figure 3 also shows that the mortality impacts
attributable to transboundary ozone caused by every
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Figure 2.Mortality contribution caused by transboundary ozone from a source versus a receptor perspective. The x-axis shows
the ratio of nonlocal to global premature deaths caused by a source region, and the y-axis shows the ratio of foreign to total
impact exerted upon a receptor region. The circles denote results for individual years, with the lightest colors representing 1951
and the darkest for 2019. The colors differentiate the income groups: high-income (red), upper middle (orange), lower middle
(green), and low-income (blue). The circles with thick black coats denote the average situations over 1951–2019.

Figure 3. Bi-directional transboundary ozone related health responsibility. Each cell in the grid shows the premature deaths in a
receptor region due to anthropogenic emissions per million people in a source region. HI, UMI, LMI and LI is short for
high-income, upper middle income, lower middle income and low-income group, respectively.

million people of the other three groups reach their
maximum values in 2019. However, in this year the
impacts of upper middle and lower middle groups
on the high-income group are still smaller than the
reciprocal impacts (1.6 [95% CI: 0.7–2.5] versus 6.7
[95% CI: 2.5–10.8], and 0.4 [95% CI: 0.2–0.7] versus
6.3 [95% CI: 2.8–9.8]). This is due to the regional
differences in population exposed to ozone and in
baseline mortality rate. The same phenomenon exists

between the upper middle and the lower middle
groups.

3.3. Linkage betweenmortality attributable to
transboundary ozone and affluence
Figure 4 links the transboundary impact by everymil-
lion people in a given group (as a source region)
to its affluence level (i.e. per capita GDP), by put-
ting together data in all groups and years. This allows
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Figure 4. Linking regional affluence level to its mortality contribution attributable to transboundary ozone. The y-axis shows
transboundary ozone related factional mortality impact (the ratio of mortality to total population outside the source region) (a),
transboundary population-weighted MDA8 ozone (b), NOx emissions (c) and NMVOC emissions (d) caused by every million
people in each source region. The x-axis shows per capita GDP of each source region.

to evaluate the evolution of regional transboundary
ozone impact in association with affluence from a
macroscopic, socioeconomic perspective. We exam-
ine the per-million-people contributions of each
source region to its transboundary ozone related
fractional mortality impact (FMI, the ratio of mor-
tality number to total population; figure 4(a)), to
transboundary population-weighted MDA8 ozone
(figure 4(b)), and to its own NOx (figure 4(c)) and
NMVOC (figure 4(d)) emissions. Analysis of trans-
boundary FMI caused by everymillion people in each
source region removes the influence of historical pop-
ulation growth. Results for local FMI are shown in
supplementary figure 12 for comparison.

For the high-income group, a clear inverted
U-shaped relationship exists between its affluence
level and per-million-people transboundary FMI
(figure 4(a)). The transboundary FMI increases with
affluence until a turning point, after which the trans-
boundary FMI decreases substantially with further
increasing affluence. The per capita GDP at the
turning point is about 23 000 USD. Similar inver-
ted U-shaped patterns are evident for this group
in per-million-people contributions to transbound-
ary ozone, NOx emissions and NMVOC emissions
(figures 4(b)–(d)).

For the upper middle group, its per-million-
people NOx emissions peak at an affluence level of

about 6300 USD, which is much lower than the turn-
ing point of high-income group. The lower turning
point is partly due to emission control measurements
in China [20, 37, 49], which belongs to this group.
Prior to this turning point, the upper middle group
follows the growth pattern of per-million-peopleNOx

emissions of the high-income group. Per-million-
peopleNMVOC emissions of the uppermiddle group
deviate from the path of high-income group and start
to decline at an affluence level around 7500 USD.

For the upper middle group, its per-million-
people transboundary FMI is very small when the
affluence level is below 1000 USD, but grows sub-
stantially with affluence to quickly match the path of
high-income group until a turning point similar to
those for precursor emissions. The small mortality
impact at low-affluence situations is because ozone
concentrations are below the LCC (26.7 ppbv) in
many downwind regions of the upper middle group.
There is emerging evidence that the health impact of
ozone may not have such an exposure threshold [62].
Removing this threshold would substantially increase
themortality impact at low-affluence situations (sup-
plementary figure 2).

Per-million-people NOx and NMVOC emissions
and transboundary ozone impact of the lower middle
grouphave followed similar paths as the uppermiddle
group, albeit with some differences at low affluence
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situations around 1000 USD. For the per-million-
people transboundary FMI, the gap between the
paths of lower middle and upper middle groups
narrows down along with the increasing affluence
level.

Among the four source regions, the low-income
group has undergone the weakest growth in affluence
in both absolute and relative terms. For this group,
there is substantial scattering in its per-million-
people emissions, transboundary ozone and mortal-
ity impact. The relatively small changes in affluence
render an affluence-pollution relationship more dif-
ficult to be established.

4. Conclusion

This study shows considerable transboundary ozone
related premature mortality over the course of 1951–
2019 and its evolution with regional affluence. Bi-
directional transboundary pollution between less and
more affluent regions are substantial. The high-
income group has undergone an inverted U-shaped
pattern between its affluence and its mortality impact
caused by transboundary ozone, after removing the
effect of historical population growth in both source
and receptor regions. The upper middle group has
experienced a turning point at a lower affluence level,
whereas turning points are not obvious in the lower
middle and low-income groups.

As less affluent countries try to achieve sus-
tained economic growth, they continue to suffer from
increasing pollutant emissions in general. Starting at
a low-affluence turning point to invert this emission
trend will have local and nonlocal health benefits via
atmospheric transport. This task is possible, because
the scientific knowledge and financial and technical
capabilities for ozone control nowadays are much
better than decades ago [73]; the turning point of
the upper middle group at an affluence level much
lower than the high-income group is strong evid-
ence. Although the short-term economic costs of pol-
lution mitigation can be substantial for less afflu-
ent regions, such burden can be compensated by its
health benefits [2, 5, 74]. Stringentmitigation policies
may also provide new opportunities for technolo-
gical innovation [19, 75, 76], efficiency improvement
[77, 78], and labor demand enhancement [79, 80].
Measures to cut pollutant emissions often reduce
carbon dioxide simultaneously with substantial co-
benefits for climate change mitigation.

Besides domestic actions by less affluent countries
to reduce emissions, international financial and tech-
nological aids from more affluent countries would
lead to a win-win health outcome. This is important
especially given that large fractions of present emis-
sions in less affluent countries are associated with
export of goods to supply consumption worldwide
[35, 36] in a globalized economy. To this end, our

study offers a socioeconomic insight into historical
inter-regional pollution linkage to facilitate concerted
mitigation action.
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