Chapter 3

Measurements and Modeling of Air Pollution

Quiz

- 1. Causes of slowdown and resumption of CH₄ growth
- 2. Project the future changes in biomass burning emissions under human influences and climate change
- Given the wind fields and NO₂ columns, estimate the lifetime of NOx
- 4. Given CO and/or NOx emissions, estimate emissions of other species such as CO₂ and N₂O
- 5. Causes of horizontal distribution in sulfur emissions from oceans
- 6. Why does deposition of N and S resemble their emissions

Measurements of Chemical Constituents

Studies of Earth system, including AQ, are based on measurements & modeling

- Ground, sounding, airborne, space borne
- Concentration, remote sensing
- Total, speciated
- Long-term, campaign
- ➢ Gaseous pollutants: Ozone, NOx, NMVOC, CO, NH₃, SO₂
- > Aerosols: PM₁₀, PM_{2.5}, components, sizes, morphology, optical properties
- \succ Radicals: OH, HO₂, RO₂, RO
- \succ GHG Gases: CO₂, CH₄, N₂O

Ground Measurement Networks

of ground sites = 1420

Yan et al., ACP, 2016

Measured Global CH4 Growth

Fletcher et al., 2019, Science

Global Measurements of Ozone from TOAR Project

Schultz et al., 2017, Elementa

Air Quality Monitoring Network in the U.S.

- > Lots of pollutants: ozone, NO_2 , SO_2 , CO, $PM_{2.5}$, PM components, etc.
- 800+ sites since 1990; currently more than 4000 sites

For more info: https://www.ep a.gov/outdoorair-qualitydata/interactivemap-air-qualitymonitors

Air Quality Monitoring Network in China

- Before 2013: API, PM₁₀, NO₂, SO₂. Regular measurements are available in 86 cities
- Since 2013: AQI, PM_{2.5}, PM₁₀, O₃, NO₂, SO₂, CO. Over 300+ cities, 1500+ sites, mostly in urban/suburban locations

https://www.aqistudy.cn/

乌斯季卡维

10-26 09:00:00中国AQI小时分不

Exc. Good S.P. M.P. H.P. E.P.

Surface Measurements: The Chinese Case

《环境空气质量标准》 (GB 3095-2012) 修改单

3.14 "标准状态 standard state 指温度为273 K, 压力为101.325 kPa时的状态。本标准中的污染物浓度均为标准状态下的浓度"修改为: "参比状态 reference state 指大气温度为298.15 K, 大气压力为1013.25 hPa时的状态。本标准中的二氧化硫、二氧化氮、一氧化碳、臭氧、氮氧化物等气态污染物浓度为参比状态下的浓度。颗粒物(粒径小于等于10 μm)、颗粒物(粒径小于等于2.5 μm)、总悬浮颗粒物及其组分铅、苯并[a]芘等浓度为监测时大气温度和压力下的浓度"。

该标准修改单自2018年9月1日起实施。

Ozone Pollution over China: Global Perspective

AVGMDA8 for April–September, 2013–2017

Lu et al., 2018, ESTL

Surface PM_{2.5} Measurements in China

贺克斌,2014

Speciated PM Measurements in China

Fang et al., 2009

Speciated PM Measurements in China

OC (14 models)

BC (14 models)

Ren F.-X. et al., GMD, 2023

Sounding: "Big Fish" over Tibetan Plateau

第二次青藏高原综合科学考察研究 "大气成分垂直结构及其气候影响" 科考分队"系留气艇探空观测实验"

Pictures taken in Lhasa in August 2020

Zhaoze Deng

WOUDC Ozonesonde Network

https://woudc.org/data/dataset_info.php?id=ozonesonde

WOUDC Ozonesonde Data for Model Evaluation (2008)

Ni, R.-J., 2018, ACP

Aircraft Measurements: MOZAIC/IAGOS, CARIBIC

http://iagos.sedoo.fr/

Petzold et al., 2012

MOZAIC Ozone Data for Model Evaluation (2000-2005)

Ni, R.-J., 2018, ACP

我国生物气溶胶观测网络

 干旱区生物气溶胶数浓度高于半干旱区
 半干旱区生物气溶胶在总悬浮颗粒物中 占比均低于干旱区与湿润区
 塔克拉玛干沙尘对青藏高原大气生物气
 溶胶贡献为85.4%,特别是增加了高原潜 在病原体(16.43%)和冰核细菌(73.8%)

AERONET for Aerosol Optical Properties

- > Automatic sun-tracking photometer (CIMEL 318)
- Globally consistent algorithm, including cloud screening
- Few sites in China with multi-year measurements (Beijing IAP, Xianghe, Taihu, SACOL, Hong Kong PolyU)

NASA

Huizheng Che

中国地基气溶胶光学观测 (AERONET、CARSNET、CSHNET、SONET等)

区域大气本底站观测到的AOD变化

AERONET for Data Evaluation

Lin et al., 2014, 2016, AE

Visibility Measurements

Manual

Automatic

Visibility = Coefficient / Extinction_efficiency

Used traditionally as a meteorological indicator, but can also be employed to study (long-term) PM pollution

Surface Meteorological Measurement Stations

Also for visibility measurements

AOD Inferred from Visibility Measurements

2005–2012 mean AOD at 550 nm for days with valid MODIS data

Instrument for Aerosol-Turbulence-Optical Interaction

中大韩永

大气激光雷达

激光雷达:探测激光与气溶胶、气体分子等粒子相互作用的回波信号(强度、偏振态、光学频率)

- 地基激光雷达: 欧美日等发达国家已建立区域性的大气激光雷达观测网络,如欧洲EARLINET,美国MPLNET,
 日本AD-NET;中国也已初步建成激光雷达观测网络
- 星载激光雷达:美国NASA早在2006年即发射CALIPSO偏振大气激光雷达卫星,欧洲即将发射激光雷达卫星 (ALADIN); 2022,中国发射全球首颗搭载高光谱分辨率激光雷达卫星 (ACDL)

来源: 梅亮

沙式激光雷达

FS MAX-DOAS 高时间分辨率的同步多轴系统

多仰角同步观测取代电机顺序扫描以提高采集时间分辨率

气体	柱浓度探测限
NO ₂	1.67×10 ¹⁵ molec./cm ²
SO ₂	2.89×10 ¹⁵ molec./cm ²
нсно	1.01×10 ¹⁶ molec./cm ²

时间分辨率: ≤1min

Satellite Measurements

Sputnik 1: Oct 4, 1957 Sputnik 2: Nov 3, 1957

Early weather sat.: 1950s-1960s

Modern weather satellites: 1970s-

- Polar orbiting satellites
- Geostationary satellites

Satellite Meteorological Measurements Also Provide Information to Infer Aerosols

China's Operational Weather Satellites

Source: http://www.nsmc.org.cn/nsmc/cn/satellite/index.html

Global Operational Weather Satellites

Source: http://www.nsmc.org.cn/nsmc/cn/satellite/index.html

Polar Orbiting Satellite: FY-3

观测特点:

- 1. 在约800公里轨道高度绕地球南北极飞行,每12小时无缝隙覆盖全球
- 2. 搭载多种遥感仪器, 获取大气和地球环境综合探测信息

Geostationary Satellite: FY-4A

气象卫星作用和优势:

- 全球全天候无缝隙观
 测,实现对地球大气
 和环境综合探测
- 局地高频次观测,实 现对自然灾害和环境 事件的动态观测

观测特点:

- 轨道高度约35800公里,与
 地球自转同步,观测区域相
 对固定
- 可每15分钟获取地球全圆 盘图像;每5分钟对中国区 域进行高频扫描。

High-Resolution Geostationary and Polar Orbiting Satellite Measurements of NO₂ and Other Tracers

NO₂ sensors: GOME, SCIAMACHY, OMI, GOME-2A/B, OMPS, TROPOMI, GEMS...
Modern Satellite Remote Sensing of Air Pollutants

Advantages:

- Near real-time
- Multiple species
- Excellent spatial coverage
- Long-term data
- High resolution data
 - Easily accessible & verifiable
 - > Aerosols: MODIS, MISR, CALIOP, FY
 - O_3 : OMI, TES, AIRS, MLS, FY
 - CO: TES, MOPITT, IASI, FY
- NH₃: TES, IASI, CrIS, FY
- ISOP: CrIS
- ✓ NO₂: TROPOMI, OMI, GEMS, FY
- ✓ SO_2 : OMI, TROPOMI, GEMS, FY
- ✓ HCHO: OMI, TROPOMI, GEMS ³⁷

Satellite Measurements of Global Air Pollution

MODOB_M3.051 Aergabil Object Depth of 550 nm [unitles]

OMI/LIU

Satellite data applications:

- High-resolution monitoring & forecast
- Local-regional-global scale pollution & transport
- Trends and variability
- Emission constraint
- Impacts assessment

Reflectance Spectra at VIS-NI (from ESA GOME-1)

Averaging Kernel and Air Mass Factor

DOAS Approach to Retrieving NO₂, SO₂, HCHO, CHOCHO from Satellite Remote Sensing

$$I(\lambda) = I_0(\lambda)e^{-\sum_i \sigma_i(\lambda)N_{s,i} + \sum_j a_j\lambda^j}$$
OAS

$$\ln\left(\frac{I(\lambda)}{I_0(\lambda)}\right) = -\sum_i \sigma_i(\lambda)N_{s,i} + \sum_j a_j\lambda^j$$

D

Retrieving NO₂ from Satellite Remote Sensing

POMINO NO₂ VCD Products for OMI, TROPOMI & GEMS

<u>http://www.pku-atmos-acm.org/acmProduct.php</u> All Level-2 and Level-3 data are freely available (2004-present)

5 km-res Tropospheric NO₂ VCDs in JJA 2018–2022 55°N 2018 POMIN@-TROPOMI 45°N 35°N 25°N Unit: 10¹⁵ cm⁻² 15°N 70°E 80°E 90°E 100°E 110°E 120°E 130°E 140°E 2 6 8 n Δ 500+ registered users from 200+ institutes in 25 countries

Lin et al., ACP, 2014 Lin et al., ACP, 2015 Liu et al., AMT, 2019 Liu et al., AMT, 2020 Zhang et al., NRSB, 2022 Zhang et al., AMT, 2023 Zhang et al., AMT, 2025

43

OMI-Retrieved Tropospheric NO₂ Column: 2005-2019

Tropospheric NO₂ Column: OMI versus TROPOMI

De-striping OMI NO₂ VCDs based on Empirical Distribution

Kong et al., submitted

Global TROPOMI HCHO VCDs

Tropospheric HCHO VCDs (April, July, October 2021, and January 2022)

OMI-retrieved VCDs of Tropospheric SO₂

OMI-retrieved VCDs of Tropospheric Ozone

Annual mean in 2009 (DU)

FY-4B/GIIRS 干涉式大气垂直探测仪

(a) 一氧化碳

Zeng AMT 2023a, b; Zeng 2024 JGR-Atmosphere

(b) 甲酸

曾招城@北大遥感所

FY-3E/F HIRAS 红外高光谱大气垂直探测仪

Zeng et al. 2025 JQSRT

Hua et al. RSE, in revision

曾招城@北大遥感所

MODIS AOD in 2009

MODIS Monthly AOD at Kilometer Resolution

Li et al., 2003

MODIS-VIS Single Scattering Albedo Retrieval

Jing Li

Gap Filling for Satellite Data: NO₂

GEMS + GEOS-CF + UNet → TROPOMI

云知道——大气环境遥感数据平台

上线啦!<u>http://www.aers-cloud.org.cn</u>

本网站为草根式数据共享平台,旨在促进大气卫星数据产品的融合与共享

发起团队

北京大学 中国矿大 武汉大学 南科大 华东师大 北京大学 西湖大学 中山大学 林金泰 秦凯 毛飞跃 朱雷 张羽中 白开旭 朱丽叶 沈路

Field Campaign

- Measurement campaigns: intensive measurements of targets (e.g., pollutants) in a short period (weeks to months), employing a variety of instruments.
- TRACE-P
- ICARTT
- INTEX-B
- ARCTAS
- PRIDE-PRD
- CAREBEIJING
- •

✓ Aircraft measurements are used in these campaigns

PRIDE-PRD 2004, 2006, 2008

Field Campaign Measurement Parameters

Unknown OH Recycle Mechanism Inferred from Campaign

Hofzumahaus et al. "Amplified Trace Gas Removal in the Troposphere." Science 324(5935): 1702-1704.

Numerical Models in Atmospheric Research

- > Type
 - Statistical model, AI model, physical model
 - Dynamic, process-based, parameterization
- Purpose
 - Meteorological, climate, ocean, sea ice, chemical transport, ..., Earth system
- Dimension
 - Box model, 1-D, 2-D, 3-D
- Domain (scale)
 - Global, regional, urban, nested
- Proceeding
 - Forward, backward (back-trajectory), adjoint

Primitive Equations for Large-scale Motions

Meteorological and climate models are based on these equations

Hypsometric equation (hydrostatic)

Horizontal equation of motion

Continuity equation

Thermodynamic energy equation

Bottom boundary condition

Five unknowns

Wallace and Hobbs, 2006

$$\frac{\partial \Phi}{\partial p} = -\frac{RT}{p} \qquad d\Phi = gdz$$
$$\frac{dV(u,v)}{dt} = -\nabla \Phi - f\mathbf{k} \times \mathbf{V} + \mathbf{F}$$
$$\frac{\partial \omega}{\partial p} = -\nabla \cdot \mathbf{V} \qquad \omega = \frac{dp}{dt}$$
$$\frac{dT}{dt} = \frac{\kappa T}{p} \omega + \frac{J}{c_p} \qquad \kappa = R/c_p$$
$$\frac{\partial p_s}{\partial t} = -(\mathbf{V} \cdot \nabla p)_s - \left(w \frac{\partial p}{\partial z}\right)_s - \int_0^{p_s} (\nabla \cdot \mathbf{V}) dp$$
$$\mathbf{V}(u,v), \omega, \Phi, T$$

J and **F** need to be parameterized

Atmospheric Chemical Transport Modeling

Atmospheric chemical transport models:

 Simulating spatiotemporal variations of trace species after they or their precursors are emitted into the atmosphere

Chemistry in Earth System Models

J.-F. Lamarque

Numerical Modeling of Atmosphere

Global High-Resolution Simulation of Surface Ozone

Surface ozone simulation at 12.5 km x 12.5 km

NASA	Fri 10 Aug 2012		Sat 11 Aug				un 12 Ai	ng	Mon 13 Aug			Tue 14 Aug		
Global Modeling and Assimilation Office NASA Goddard Space Flight Center		10	15	20	25	30	35 ppbv	40	45	50	55	60		GEOS-5 CCM 12.5 km x 12.5 km

Global High-Resolution Simulation of Tropospheric CO

250-hPa Carbon Monoxide

NASA	Fri 10 Aug 2012		Sat 11 Aug				un 12 Ai	ug		Mon 13 Aug			Tue 14 Aug	
Global Modeling and Assimilation Office NASA Goddard Space Flight Center		50	60	70	80	90	100 ppbv	110	120	130	140	150		GEOS-5 CCM 12.5 km x 12.5 km

Stretched Grid Modeling for Single Targeted Domain

Bindle et al., GMD, 2021

Global versus Regional Models

Global Models

- Covers the globe
 - Good for global studies
 - No LBCs are necessary
- Low-resolution (\geq 100 km)
 - Sim. or no small-scale processes
- Example: GEOS-Chem, AM3

Regional Models

- Covers a region
 - Need LBCs from global

models via nesting

- High-resolution (~ 10 km)
 - Resolve small-scale processes

Example: CMAQ, WRF-Chem

Models Often Miss or Misrepresent Small-scale Processes

- Atmospheric chemical & physical processes have multiple scales
- Models often misrepresent scales smaller than 2 x grid size
 - Critical, because small-scale processes affect large-scale ones
 - Affect both distribution and total mass of trace species

A Simple Case How Small Scales Affect Large Scales

Limited by Resolution

Models Often Miss or Misrepresent Small-scale Processes

- Un-even terrain
- Small-scale meteorology
- Variability in land use, vegetation, etc.
- Small-scale horizontal & vertical transport
- Small-scale variability in chemistry & emissions

model reality
$$\overline{A} \cdot \overline{B} - \overline{A \cdot B} = -\overline{A' \cdot B'} = -r_{AB} \cdot \sigma_A \cdot \sigma_B$$
> $r_{AB} < 0$: Model has an overestimation> $r_{AB} > 0$: Model has an underestimation
Coarse Models Tend to Overestimate Ozone Production

Sillman et al., 1990

Finer Resolution Leads to Less Ozone

Surface Ozone over Europe in June 2006 at 12:00 UTC

74

2-way Coupling Improves Tropospheric Simulation by Reducing Modeled Oxidative Capability

	Global Model	Two-way Model	'Observation'
OH (10 ⁵ cm ⁻³)	11.8	11.2 (-5%*)	10.4 - 10.9
O ₃ (DU)	34.5	31.5 (-8.7%)	31.1 ± 3 (OMI/MLS)
O ₃ (Tg)	384	348 (-9.5% [#])	
NOx (TgN)	0.169	0.176 (+4.1%)	
CO (Tg)	359	398 (+10.8% ^{&})	
MCF lifetime (yr)	5.58	5.87 (+5.2%)	6.0 - 6.3
CH ₄ lifetime (yr)	9.63	10.12 (+5.1%)	10.2 - 11.2
NMVOC (TgC)	10.1	10.2	

* Greater than its interannual variability (2.3%)

- [#] Greater than the change from 2000 to 2100 under RCP6.0
- [&] Equivalent to a 25% increase in global CO emissions

Yan Y.-Y. et al., ACP, 2014, 2016

2-way Coupling Better Simulates Tropospheric CO

CO at 6.5 km altitude. 2008/07/01 – 2008/08/15

Two-way model

Two-way minus Global

Relative difference

80'

Modeling of Atmospheric Transport and Source Attribution

• Traditional observation-based methods (PMF, CMB)

- Simplified treatments of chem & transport; short-distance attribution
- Difficult to represent nonlinear (chemical) processes, or chem-met interactions

• AI models

- Fast and low costs (in prediction); derivatives are easily calculated
- Lack physical mechanisms and explainability; causality is unclear or lacking

✓ Backward trajectory models

- Lagrangian approach to track the flow backwards; relatively fast and low cost
- Substantial limitations in chemistry and mixing

✓ Chemical transport models (CTMs)

- Forward approach with zero-out simulations, tagged approach, etc.
- Account for different processes, but are resource-costly

✓ Assimilation (Adjoint models, EnKF)

- (Local) linearization of CTMs; powerful for attribution to each LOCATION
- Slowest, and still cannot fully address the nonlinearity issue
- Combination of physics-based and data-based methods

Data-based

Observation-based versus Back Trajectory

Observation-based attribution of source regions for spheroidal carbonaceous particles

Back trajectory for source attribution

Adjoint Modeling

Numerically solve

$$\nabla_{\mathbf{x}} J(\mathbf{x}) = 2\mathbf{S}_{\mathbf{a}}^{-1}(\mathbf{x} - \mathbf{x}_{\mathbf{a}}) + 2\mathbf{K}^{\mathsf{T}}\mathbf{S}_{\mathsf{e}}^{-1}(\mathbf{K}\mathbf{x} - \mathbf{y})$$
$$= \mathbf{0}$$

Source: Lin Zhang

GEOS-Chem Adjoint

Sensitivity of ozone concentration at Mt Bachelor on May 10, 2006 at 18 UT to ozone fields at earlier time steps (April 25 - May 10, 2006)

Ensemble Kalman Filter (EnKF)

EnKF for NOx Emission Inversion

Miyazaki et al., ACP, 2017

Physics-Guided Artificial Intelligence for Emission Inversion

Trained by trajectory models He et al., GMD, 2025

Trained by CTMs Xing et al., EST, 2022

Quiz

- What are the challenges of measurements in China? How can we conquer these challenges? What should be the priority?
- Can pollution measurements also benefit studies of greenhouse gases? If so, how?
- To what extent can we retrieve vertical profiles of NO₂ based on satellite remote sensing? What are the bottleneck in theory and technology?
- Can we retrieve multiple species from satellite remote sensing using a (single) generalized algorithm? Why?
- For a horizontal resolution of 200 km, what is the smallest scale a model can resolve? Discuss wrt chemistry and dynamics (e.g., winds), individually.

Global Monitoring Division Network

AVHRR AOD @ 550 nm: 1982-2006

Li et al., 2014, JGR

AOD @ 380 nm from Nimbus-7 TOMS: 1979-1991

Torres et al., 2002, JAS

Satellite Observed Pollution Trends and Variability over China during 2000-2012

Coarse Models Under-represent Small Scales

Resolution-dependent Net Ozone Production

Wild an Prather, 2006

Atmospheric Chemical Transport Model

MOZART-Simulated Near-Surface Ozone in 1990s JJA

From Radiance (L1b) to Tropospheric NO₂ VCD (L2)

2-way Model Better Simulates Surface O₃

Comparisons with AQS and EMEP observations:

- Improvement is most significant in cold season
- Improvement from 1-way to 2-way is 1-7 times that from global to 1-way

Yan Y.-Y. et al., ACP, 2014, 2016

2-way Model Better Simulates Tropospheric O₃

95

2-way Coupling Better Simulates Tropospheric CO

One-way nested model minus Global model

Global model

Air Quality Monitoring Network in China

Measurements are limited by:

- Lack of historical data
- Lack of representativeness
- Lack of profile and column data
- Data verifiability and accessibility

What we want:

- Long-term data
- Good geographical coverage
- High spatiotemporal resolution
- Vertical and surface data
- Easily verifiable and accessible

Chinese Networks for Aerosol Properties

98

Observation-based versus Back Trajectory

Observation-based attribution of source regions for spheroidal carbonaceous particles

Back trajectory for source attribution

