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Abstract
The Tibetan Plateau holds the largest mass of snow and ice outside of the polar regions. The deposition of light-absorbing particles (LAPs) 
including mineral dust, black carbon and organic carbon and the resulting positive radiative forcing on snow (RFSLAPs) substantially 
contributes to glacier retreat. Yet how anthropogenic pollutant emissions affect Himalayan RFSLAPs through transboundary transport 
is currently not well known. The COVID-19 lockdown, resulting in a dramatic decline in human activities, offers a unique test to 
understand the transboundary mechanisms of RFSLAPs. This study employs multiple satellite data from the moderate resolution 
imaging spectroradiometer and ozone monitoring instrument, as well as a coupled atmosphere–chemistry–snow model, to reveal the 
high spatial heterogeneities in anthropogenic emissions-induced RFSLAPs across the Himalaya during the Indian lockdown in 2020. 
Our results show that the reduced anthropogenic pollutant emissions during the Indian lockdown were responsible for 71.6% of the 
reduction in RFSLAPs on the Himalaya in April 2020 compared to the same period in 2019. The contributions of the Indian lockdown- 
induced human emission reduction to the RFSLAPs decrease in the western, central, and eastern Himalayas were 46.8%, 81.1%, and 
110.5%, respectively. The reduced RFSLAPs might have led to 27 Mt reduction in ice and snow melt over the Himalaya in April 2020. 
Our findings allude to the potential for mitigating rapid glacial threats by reducing anthropogenic pollutant emissions from economic 
activities.
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Significance Statement

Ice and snow over the Himalayas have been melting at an accelerating, alarming rate in recent decades. Depositions of light-absorbing 
particles decrease snow albedo and accelerate ice and snow melt. Here, we show that the reductions in human activities during the 
Indian COVID-19 lockdown and resulting pollution transport have reduced particle depositions and snow melt over the central and 
eastern Himalayas, while the changes in natural dust transport have been the dominant driver for the western Himalayas. Our find
ings offer new insights for understanding the radiative balance and water security in the Himalayan region towards establishment of 
effective protection strategies.
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The Tibetan Plateau (TP) holds the largest snow and ice mass out
side the polar regions (1, 2), acting as a water storage tower for 
South and East Asia. Snow and glacial melt in the TP constitute 
the primary freshwater supply for over 20% of the global popula
tion (3). Yet, the glaciers have been melting at an accelerating, 
alarming rate over the past decade (4, 5), resulting that one-third 
of Himalayan glaciers inside the TP could be gone by the end of 
this century due to climate change (6). The glacial retreat of the 

TP therein further affects the weather, hydrological cycles, and 
ecosystems at regional and global scales (7). Besides the up to 
0.3◦C per decade of warming on the TP during the past 30 years, 
previous studies show that deposited light-absorbing particles 
(LAPs) like dust and black carbon aerosols have significantly con
tributed to the rapid glacial retreat (8–11).

As an important emitter of LAPs, human activity largely con
trols the variation of LAP concentrations in ice and snow. Dust 
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aerosols from the Indian Peninsula have been reported to have a 
strong physical connection with the darkening of snow and ice 
on the TP (12–14). Thus, assessing the influence of human activ
ities on radiative forcing on snow (RFSLAPs) is essential for provid
ing valuable guidance for effective mitigation strategies. However, 
LAP variations reflect a complex mixture of anthropogenic emis
sions and natural environmental factors and are very sensitive 
to meteorological conditions. For example, changes in winds can 
affect LAP transport and deposition, and temperature and snow
fall are closely related to the accumulation of LAPs in the snow. 
Furthermore, the responses of snow and ice radiation forcing to 
human activities exhibit a heterogeneous spatiotemporal distri
bution. these factors make estimation of the impacts of human 
activities on ice and snow melt a challenging task.

The COVID-19 pandemic has created a unique natural experi
ment for revealing and answering the long-standing question of 
how reductions in human activities can affect air pollution (15, 
16). To cope with the COVID-19 pandemic, the Indian government 
implemented a national lockdown from 2020 March 25 to 2020 
May 31. This led to an unprecedented reduction in economic 
and transportation activities and pollution levels. Aerosol optical 
depth (AOD) values dropped sharply and air quality improved 
across the country (17–19). LAPs concentrations over the Indus 
Basin have also decreased greatly (15). Such a reduction in LAPs 
over India might have meant a substantial drop in pollution trans
ported to the TP. In addition, certain amounts of pollutants trans
ported to the Himalayas by the prevailing westerly winds in spring 
might originate from Nepal and Pakistan as well (1, 20, 21). The 
two countries implemented lockdowns from March 24 to July 21 
and March 23 to August 17 in 2020, respectively. However, the 
oil/coal CO2 emissions of Nepal and Pakistan from 2017 to 2020 
were only about 0.5 and 5.4% of the emissions in India, according 
to Greenhouse Gas Emissions from Energy data. Meanwhile, the 
burned area from January to May during 2017–2020 were only 
about 5.5 and 4.8% of those in India, according to the MCD64A1 
burned area data (22). The prevalent westerly winds during the 
lockdown period could easily transport LAPs from northern 
India to the Himalayas (23). There are more anthropogenic LAPs 
emissions in northern India compared to southern India (1, 24, 
25). Therefore, the anthropogenic LAPs transported to the 
Himalayas in this season may be mainly tied to emissions in 
India, and the reduction in human activities during the Indian 
lockdown period was an important driving factor for reduction 
in transported pollution. Yet, the specific meteorological condi
tions also led to significant changes in pollutant concentrations. 
Therefore, the relationship between LAP reductions on the TP 
and the decreased human activities in India remain to be 
addressed.

In this study, using the Indian COVID-19 lockdown as a win
dow, we combine satellite data and model simulations to explore 
the impacts of large-scale reduction in human activities on 
RFSLAPs along the Himalaya. We quantify the difference between 
the lockdown period of 2020 and previous years in smoke and 
dust aerosols on the Indian Peninsula and in the resulting 
RFSLAPs along the Himalaya. We then explore the responses of 
RFSLAPs over the western, central, and eastern Himalayas, respect
ively, to changes in human activities. The GEOS–Chem chemical 
transport model and the SNICA (snow ice and aerosol radiation) 
model [atmosphere–chemistry–snow (GEOS–Chem–SNICAR)] are 
coupled to simulate the influences of human activities on RFSLAPs.

To the best of our knowledge, this is the first study that explores 
the causal mechanism for the impacts of anthropogenic emis
sions on RFSLAPs over the Himalayas. The novelties of this study 

are as follows. Taking the Indian COVID-19 lockdown as a best- 
case scenario, we find that anthropogenic emissions and natural 
environmental factors have different impacts on ice and snow 
darkening and melt in the three subregions of the Himalaya. We 
identify the spatial heterogeneity of the impacts, and quantita
tively demonstrate their respective contributions to the 
Himalayan RFSLAPs. Results of the dynamic mechanisms from 
the coupled GEOS–Chem–SNICAR model support the findings on 
the rapid reduction of Himalayan snow and glacial melt in re
sponse to major human-made radiative forcing agents. This study 
provides evidence that reductions in anthropogenic emissions are 
helpful to decrease snow and glacial melt. Our findings are essen
tial for understanding the radiative balance and water security in 
the region, and offer valuable guidance for effective mitigation 
strategies.

Results
The RFSLAPs data from MODDRFS retrievals (26), driven by moder
ate resolution imaging spectroradiometer (MODIS) satellite im
agery and the ozone monitoring instrument (OMI) absorbing 
aerosol optical depth (AAOD) (27) product in January–May from 
2017 to 2020 are used to estimate ice and snow pollution and aero
sols during the Indian lockdown. The RFSLAPs and AAOD data are 
described in detail in Materials and Methods section. As shown in 
Fig. 1A, the RFSLAPs on the TP, particularly over the Himalayas, 
had a large decline (by 7.85 W/m2 on average) during the Indian 
lockdown (April–May 2020) compared to the same periods in 

Fig. 1. Changes in Himalayan RFSLAPs linked to Indian lockdown. 
Differences between the RFSLAPs in 2020 and the average from 2017 to 
2019 over the TP. A) Differences during the lockdown period (from April to 
May). B) Differences during the prelockdown period (from January to 
March).
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2017–2019. Before the lockdown (January–March) in 2020, the 
RFSLAPs values were similar to those in the same periods in 
2017–2019, with a difference less than 4 W/m2 on average (Fig. 1B).

We also compared the variations of daily average RFSLAPs in the 
western, central, and eastern Himalayas before, during, and after 
the Indian lockdown in 2020 to the same periods in 2010–2019 
(Fig. 2). During the lockdown, RFSLAPs in the three regions were 
at the lowest levels in the recent decade, especially in the western 
and central Himalayas, with an average decrease of 9.12 and 
14.68 W/m2, respectively. After the lockdown, RFSLAPs on the cen
tral and western Himalaya rose rapidly and exceeded the average 
in 2010–2019, while RFSLAPs in the eastern Himalaya gradually 
returned to the average in 2010–2019.

Previous studies indicated that anthropogenic emissions from 
South Asia were the main sources of air pollution over the TP 
(28–30). We examined the changes of air pollutants in South 
Asia during the lockdown, using AAOD as a dimensionless proxy 
for the concentration of LAPs in the atmosphere. Over the 
Indian Peninsula, the AAOD during the lockdown was lower by 
13.3% than that in the same period of the previous years 
(Fig. 3A). The AAOD anomaly in the northern Indian Peninsula 
near the Himalaya was −20% for the lockdown period (Fig. 3A), 
compared to the value of −12.1% before the lockdown (Fig. 3B). 
The day-to-day time series in Online Supplementary Fig. S1 also 
show the high consistency between AAOD and RFSLAPs anomalies 
in March–May 2020. The association between AAOD and RFSLAPs 

anomalies was less significant in January–February 2020, due to 
fresh snowfall on snowpack and slow melt over the Himalayas 
suppressing the accumulation of LAPs on the ice and snow sur
face. Overall, these results suggest that the anomalies in TP 
RFSLAPs were tied to AAOD over Indian Peninsula. Notably, India 
is a major emitter of anthropogenic LAPs over the Indian 
Peninsula (22), but the reduction in AAOD and RFSLAPs during 
the lockdown cannot be entirely explained by a decrease in hu
man activities in India as the meteorological conditions and the 
nonanthropogenic LAPs coming from multiple countries are also 
important factors for the changes in AAOD and RFSLAPs (31).

We further explored the association of the Indian lockdown 
with the reduction in RFSLAPs over the western, central, and east
ern Himalayas, separately. On the western Himalaya, RFSLAPs had 
a large decline during the lockdown period compared to the same 
period in previous years (Fig. 2A). This, however, might not have 
been triggered solely by the reduction in transboundary anthropo
genic pollution for several reasons. First, the reduction in RFSLAPs 

for the same period from 2018 to 2019 (with an average of 11.31 W/ 
m2) (Online Supplementary Fig. S2B) was greater than from 2019 

to 2020 (9.12 W/m2). Second, the positive anomaly in the RFSLAPs 

during the post-lockdown period (Fig. 2A) was in contrast to the 
continued decline in Indian emissions of CO2 (Online 
Supplementary Fig. S4), which was used here as a proxy of an
thropogenic pollution due to the lack of pollutant emission data. 
Therefore, the RFSLAPs reduction over the western Himalaya dur
ing the lockdown period might also have been contributed by nat
ural environmental changes.

Dust emitted from deserts is an important natural source of 
LAPs (32). The dust-induced RFSLAPs is predominantly dominated 
by natural environmental factors like wind, humidity, and pre
cipitation. During the premonsoon period from mid-March to 
May before the onset of the South Asian summer monsoon (33– 
35), dust storms are frequently carried to the Himalayas from 
the upwind arid regions at about 80◦E, including Saudi Arabia, 
Pakistan, Thar Desert and Sahara. (36, 37). A large amount of 
dust aerosols are transported into the western Himalaya by the 
prevailing westerly wind (38) (Online Supplementary Fig. S3) 
(Materials and Methods section). Dust aerosols increased slightly 
from 2017 to 2018, and decreased from 2018 to 2020 over the nor
thern India (Online Supplementary Fig. S3), consistent with the in
terannual variation of RFSLAPs on the western Himalaya. 
Furthermore, the correlation coefficient for day-to-day variation 
between RFSLAPs and AAOD of dust aerosols (AAODDUST) was 
0.86 during the Indian national lockdown period and was 0.74 in 
the same period in 2017–2019 (Fig. 4A and B). In contrast, the 
day-to-day variation of RFSLAPs on the western Himalaya was 
not correlated with AAOD of smoke aerosols (AAODSMOKE) from 
April to May in 2017–2020. These results suggest that the decline 
in RFSLAPs on the western Himalaya during the Indian lockdown 
period in 2020 was mainly contributed by the reduction in trans
ported desert dusts.

The central and eastern Himalayas are close to the hotspots of 
Indian anthropogenic pollution (Online Supplementary Fig. S3). 
Available observations have shown that large amounts of pollut
ing aerosols accumulate in the central and eastern Himalayas 
(39). During the premonsoon periods, these LAPs are carried by 
southwesterly wind to the higher altitudes to be deposited to 
snow/ice over the central and eastern Himalayas (13, 31, 40).

On the eastern Himalayas, the RFSLAPs was on the rise from 
2017 to 2019 (Online Supplementary Fig. S2G and H), different 
from the interannual variations in mineral dusts (Online 
Supplementary Fig. S3A–C). Anthropogenic CO2 emissions, as a 
proxy to air pollution, plummeted by nearly 50% from 2020 
March 20 to 2020 April 8 compared to the same period in 2019 in 
India (Online Supplementary Fig. S4). Likely as a lagged effect, 

Fig. 2. Daily evolution of Himalaya RFSLAPs. Daily RFSLAPs from January to July over the western A), central B), and eastern C) Himalayas. The results are 
for 2020 and previous years. 2020 April 12 was the date when RFSLAPs began to decrease in the central and eastern Himalayas. RFSLAPs had no decreasing 
trend in the western Himalaya.
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the RFSLAPs had a substantial decrease on the eastern Himalayas 
from April 12 to May 1. The lagged correlation for day-to-day var
iations between CO2 emissions and RFSLAPs on the eastern 
Himalaya reached 0.95 during 20 days since their descents 
(March 20–April 8 for CO2 vs April 12–May 1 for RFSLAPs) (Fig. 5B). 
In contrast, there was a consistent increase of RFSLAPs on the west
ern Himalaya from January to May (Fig. 5A). Furthermore, the 
day-to-day correlation between RFSLAPs over the eastern 
Himalayas and smoke aerosols was much higher than that 

between RFSLAPs and dust aerosols (Fig. 4E and F). The results sug
gest that the RFSLAPs over the eastern Himalayas was more sensi
tive to anthropogenic pollution than to natural factors during the 
Indian lockdown.

Dust aerosols transported to the western Himalaya could be 
further carried to the central Himalaya (41). Meanwhile, the cen
tral Himalaya could be affected by a large amount of atmospheric 
black carbon (BC) dominated by anthropogenic sources (21, 42). 
During the Indian lockdown, on the one hand, RFSLAPs in the 

Fig. 3. Changes in Indian AAOD linked to lockdown. Differences of the AAOD over Indian Peninsula between 2020 and the same period in previous years 
(2017–2019). A) Differences during the lockdown (from April to May). B) Differences during the prelockdown period (from January to March).
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Fig. 4. Daily changes in aerosols and RFSLAPs from April to May. Daily AAODSMOKE/AAODDUST in Indian peninsula and RFSLAPs over the western A-B), 
central C-D), and eastern E-F) Himalayas. The left panels A, C, E) and right panels B, D, F) respectively show the changes of both aerosols and RFSLAPs in 
April-May 2020 and the same periods in 2010–2019. 

Fig. 5. Daily changes in CO2 emission and RFSLAPs from February to May 2020. A–C) in the western Himalaya, central Himalaya and eastern Himalaya, 
respectively. 2020 April 12 was the date when RFSLAPs began to decrease in the central and eastern Himalayas. 2020 March 20 was the date when the CO2 

emission began to decrease. The time-lagged correlation coefficients are for CO2 emission and RFSLAPs over the 20 days after their descent dates (April 12– 
May 1 for RFSLAPs and March 20–April 8 for CO2 emission).
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central Himalaya and AAODDUST in India showed a high correl
ation between 0.77 during the lockdown in 2020 and 0.72 for the 
same period in 2017–2019 (Fig. 4). On the other hand, the RFSLAPs 

on the central Himalaya had a large reduction from April 12 to 
May 1, similar to the eastern Himalaya and opposite to the west
ern Himalaya. The lagged day-to-day correlation between the 
RFSLAPs over the central Himalaya and CO2 emissions in India 
reached 0.87 during 20 days since their descents (March 20–April 
8 for CO2 vs April 12–May 1 for RFSLAPs) (Fig. 5). We conclude 
that RFSLAPs on the central Himalaya was influenced by both nat
ural factors and anthropogenic emissions.

Mechanisms of heterogeneous impacts 
across the Himalayas
We used the GEOS–Chem–SNICAR model to further investigate 
the relative contributions of anthropogenic emissions and natural 
environmental factors to RFSLAPs across the Himalayas during the 
Indian lockdown in three scenarios (Materials and Methods sec
tion). In Scenario 1, we used the meteorology in 2020, and set a 
50% emissions reduction in India during the lockdown. Since the 
anthropogenic pollutant emission inventory in 2020 were not 
available, a 50% reduction was used to be consistent with the 
Indian CO2 emission reduction in April 2020 compared to 
the same period in 2019 (43) (Online Supplementary Fig. S4). In 
Scenario 2, we used the meteorology in 2020 but did not change 
the emissions, representing the counterfactual scenario with re
spect to the lockdown. In Scenario 3, we used the meteorology 
in 2019 and kept the emissions unchanged.

The difference between Scenarios 1 and 3 represents the vari
ation in RFSLAPs driven by interannual changes in meteorology 
and emission together, as occurring in reality. As illustrated in 
Fig. 6A, the simulated difference in RFSLAPs (Fig. 6B) was consistent 
with the MODDRFS-RFSLAPs, i.e. 9.36, 16.35, and 13.34 W/m2 (the 
simulated difference) vs 8.87, 16.04, and 11.06 W/m2 (the 
MODDRFS-RFSLAPs) on western, central, and eastern Himalayas 
(Online Supplementary Table S1), indicating the capability of 
the GEOS–Chem–SNICAR model to capture the effects of meteor
ology and emissions on RFSLAPs.

The difference between Scenarios 1 and 2 (Fig. 6C) represents 
the effect of Indian emission reduction alone. The RFSLAPs re
sults reveal that the emission impacts have large spatial hetero
geneity across the Himalaya. As listed in Online Supplementary 
Table S1, under a 50% reduction in anthropogenic emissions, 
the RFSLAPs on the eastern and central Himalayas decreased 
(by 14.68 and 13.26 W/m2) more than those on the western 
Himalaya (by 4.39 W/m2) (by 4.39 W/m2), indicating that human 
activities have played a greater role in decrease of RFSLAPs (the 
difference between Scenarios 1 and 2) in eastern and central 
Himalayas than western, with the contribution by 110.5% and 
81.1 vs 46.8%.

The difference between Scenarios 2 and 3 represents the sole 
effect of the natural environmental factors on RFSLAPs. Fig. 6D 
shows that RFSLAPs over the eastern Himalaya during the 
Indian lockdown was higher than those in 2019 (by 1.34 W/m2 

on average). In contrast, there were apparent reductions over 
the western and central Himalayas (by 4.97 and 3.09 W/m2, re
spectively), revealing that RFSLAPs over the western Himalaya 
was more sensitive to the natural variability, contributed by 
53.2% to decrease of RFSLAPs (the difference between Scenarios 
1 and 2) vs 18.9 and −10.5% in central and eastern Himalayas. 
Overall, these modeling results indicate large reductions in an
thropogenic emissions were not the only factor for the decrease 

of RFSLAPs over the Himalaya during the Indian lockdown, and 
were chiefly responsible for 71.6%, consistent with the independ
ent, observation-based analysis.

We further converted the simulated RFSLAPs under the three 
scenarios into ice and snow melt to estimate the effect of the re
duced anthropogenic emissions during the Indian lockdown in 
2020 (see Materials and Methods section). Compared with 
the same period in 2019, ice and snow melt was declined by 
27.49 Mt (70.7%) over the Himalayas in April 2020 due to reduced 
anthropogenic emissions, while the reduction in snowmelt 
caused by the natural factors was 11.44 Mt (29.3%) (Online 
Supplementary Table S2). The much larger effect of anthropogenic 
emissions on ice and snow melt over the Himalayas suggests a 
great potential of cutting anthropogenic emissions to curb the 
rapid snow and glacial melt.

Disscusion
This study has employed multiple satellite-based data and an 
GEOS–Chem–SNICA model to assess the substantial changes in 
RFSLAPs across the Himalaya caused by transboundary anthropo
genic pollution and natural environmental factors during the 
Indian COVID-19 lockdown. Heterogeneous spatial patterns exist 
in the LAPs-induced snow/ice darkening. Desert dust particles 
dominate the ice and snow darkening on western Himalaya. The 
LAPs-induced darkening has larger responses to transboundary 
anthropogenic pollution on central and eastern Himalayas than 
on the western Himalaya.

Over the recent years, due to reduction in mineral dust emis
sions in Central Asia, fewer dusts might have been deposited on 
ice and snow of the Himalaya, leading to less dust-induced glacial 
and snow melt (44, 45). In contrast, more BC might have been de
posited because of increasing anthropogenic emissions in South 
Asia (46). Furthermore, for a given amount of mass, BC has greater 
impacts on ice and snow melt than dust due to its larger mass ab
sorption efficiency (31). These factors drive the spatial disparities 
in ice and snow melt across the Himalaya. And our results further 
show how short-term pollution disruptions can have a substantial 
additional effect.

This study offers evidence that the reduction in transboundary 
LAPs has a remarkable beneficial effect on the reduction of the 
Himalayan snow and ice melt. It provides an opportunity for tar
geted emission mitigation to constrain the timing and magnitude 
of future glacier retreat. Mineral dust transported from the Thar 
Desert by westerly winds deeply influences the RFSLAPs and the 
rate of ice and snow melting in the western and central 
Himalayas. Thus reduction in deforestation and overexploitation 
of the Indus River Basin (47–49) may help improve the ecological 
environments around the Thar Desert, and further decrease min
eral dust transport to melt ice and snow on the TP. Furthermore, 
continued use of fossil fuels in the future would increase ice and 
snow melt by increasing the LAPs, in addition to leading to sus
tained global warming (8). If present-day emission of greenhouse 
gases continue, about 60–70% of the glacier over the Himalayas 
would be lost in this century (50, 51), affecting fresh water supplies 
for billions of people. Thus reduction in fossil fuels in the Indian 
Peninsula could substantially alleviate warming and ice/snow 
melts on the TP and protect its precious water resource.

This study analyzes the response of RFSLAPs over the Himalaya 
to Indian anthropogenic emissions as a window to analyze the ef
fect of the COVID-19 lockdown, while the effects of pollution 
transported from other regions (e.g. Southeast Asia and China) 
were not included. The changes in RFSLAPs in other seasons were 
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not explored in detail. A comprehensive analysis of RFSLAPs in all 
months as well as the transboundary pollution from global emis
sions will offer a complete picture of how human activities are 
linked to the TP snow/ice darkening and melting through light- 
absorbing aerosols.

Materials and methods
RFSLAPs

The RFSLAPs data were taken from the Jet Propulsion Laboratory 
(https://snow.jpl.nasa.gov/portal/data/). The data were derived 

Fig. 6. Differences of RFSLAPs in the three scenarios over the Himalaya. A) Differences between April 2020 and April 2019 from the MODDRFS-RFSLAPs 

dataset. B) Difference between Scenarios 1 and 3. C) Differences between Scenarios 1 and 2. D) Differences between Scenarios 2 and 3.
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from the surface reflectance data (MOD09GA and MYD09GA) (52) 
from NASA’s MODIS based on the Snow-Covered Area and Grain 
size (MODSCAG) model (53) and the Dust Radiative Forcing in 
Snow (MODDRFS) model (26). The MODSCAG model used multiple 
endmembers linear spectral mixture analysis, the Mie theory and 
a discrete-ordinates radiative transfer model to estimate subpixel 
snow-covered area and snow albedo. Snow grain radii were esti
mated by the normalized snow grain size indices in MODSCAG. 
The MODDRFS determined the spectral reflectance differences 
between the measured MODIS spectrum and the modeled clean 
snow spectrum with the same snow grain radius. Integration of 
the bandwise multiplication of the spectral difference with near- 
infrared spectral irradiance (0.350–0.876 μm) that accounts for ter
rain variations gives the instantaneous surface radiative forcing. 
The retrieved radiative forcing from MODIS is instantaneous val
ue rather than daily average. The RFSLAPs data were validated with 
over 6 years of radiometer measurements (54). Here, we took the 
JPL RFSLAPs data during the 2010–2020 period and carried out 
7-day linear interpolation pixel by pixel to further improve the 
integrity over time and space.

Absorbing aerosol optical depth
AAOD and aerosol type data were taken from the OMI level 2 
near-UV aerosol products (http://disc.gsfc.nasa.gov). OMI is a 
nadir-viewing near-UV/Visible charge coupled device spectrom
eter aboard the Aura satellite. OMI measurements cover a spectral 
region of 264–504 nm. Because of the large sensitivity of the OMI 
near-UV observations to particle absorption, AAOD is a reliable 
quantitative aerosol parameter (55). Many studies used the data 
product to identify absorbing aerosols from biomass burning 
and desert dusts (56, 57). We used the OMI Level-2 AAOD data to 
represent the absorbing aerosols over the Indian Peninsula.

The OMI aerosol products were generated by the OMI/Aura 
near-ultraviolet aerosol retrieval algorithm (OMAERUV) (55) which 
used a set of aerosol models to account for the presence of carbon
aceous aerosols from biomass burning, desert dust, and sulfate- 
based aerosols. AAODs at 354, 388, and 500 nm were obtained 
from OMI aerosol products. AAOD at 388 nm was derived directly 
from the radiance observations and are chosen here. AAOD at 
354 and 500 nm were converted from 388 nm, and considered less 
reliable because the transformation relied on the spectral depend
ence of the aerosol models assumed in the algorithm. The 
OMAERUV algorithm used the Lambert equivalent reflectivity 
data which were only applied to the regions with lower than 600  
hPa. Therefore, AAOD data are missing over the Himalaya.

Aerosols are classified into three types: dust, smoke, and sul
fate. Aerosol type determination is carried out on the basis of 
the magnitudes of the near-ultraviolet aerosol index and carbon 
monoxide index (COI) parameters. In using the COI, the effect of 
background upper tropospheric carbon monoxide, which might 
not be necessarily associated with local emissions of carbon
aceous aerosols, was removed (24, 52). The smoke aerosols were 
mainly produced by biomass burning, containing dominant car
bonaceous compounds such as black carbon and organic carbon, 
while the dust aerosols were produced from arid and semiarid 
areas (such as deserts) under conducive meteorological condi
tions (27, 58).

The pixel size for AAOD was 13 × 24 km at nadir and 28 × 
150 km at the swath edges with an exact 16-day repeat cycle. 
The AAOD data were resampled to the resolution of 
0.25◦ × 0.25◦, and the data of the previous 7 days and the next 
8 days were used to synthesize the data for the current date.

The daily AAOD for each aerosol type (AAODDUST and 
AAODSMOKE) was calculated based on AAOD and aerosol type 
from OMI aerosol products. Each pixel provides both an AAOD val
ue and an aerosol type. We made a mask to set the AAOD values at 
pixels corresponding to nondust aerosol types to 0, and took the 
average of AAOD in the Indian peninsula as AAODDUST. 
AAODSMOKE was obtained in a similar way.

CO2 emission data
The oil/coal CO2 emission statistics for India, Pakistan, and Nepal 
from 2017 to 2019 were based on the Greenhouse Gas Emissions 
from Energy database. This database includes annual CO2 emis
sions from fuel combustion and fugitive emissions in 203 coun
tries worldwide. We only considered CO2 emissions from the 
combustion of oil and coal, and excluded relatively cleaner sour
ces of energy such as gas, which produce fewer LAPs. The data are 
freely available from the International Energy Agency (https:// 
www.iea.org/).

The daily CO2 emission data were derived from Carbon Monitor 
(43), which tracked the changes in CO2 emissions from fossil fuel 
combustion and cement production since 2019 January 2019. 
Daily CO2 emission values were constructed based on activities 
from power generation, industry, road transportation, aviation 
and maritime transportation, as well as commercial and residen
tial sectors. The Carbon Monitor dataset shows the variations in 
CO2 emissions influenced by weekends and holidays as well as 
the COVID-19 pandemic (43). The data can be obtained from 
https://www.carbonmonitor.org.cn/.

Burned area data
We used MCD64A1.006 burned area data (22) to estimate the 
burned area in India, Nepal, and Pakistan from January to May 
for the years 2017 to 2020. The MCD64A1 burned area data is a re
mote sensing data product obtained from the MODIS satellite. The 
MCD64A1 data product contains global fire information, providing 
spatial distribution and time-series data of global fires with a reso
lution of 500 m for each pixel. The MCD64A1 data product is freely 
available from https://earthdata.nasa.gov/.

Wind data
Wind data were taken from the Fifth Generation ECMWF 
Reanalysis (ERA5) of the global climate and weather. The wind 
vectors are at 0.25◦ × 0.25◦ resolution and averaged from April to 
May in 2020 at 500 hPa. The data are freely available from the 
Climate Data Store (https://cds.climate.copernicus.eu/).

GEOS–Chem–SNICAR simulations
GEOS–Chem is a 3D chemical transport model for simulations of 
atmospheric compositions on local to global scales. We used 
GEOS–Chem version 13.2.0 nested over Asia (60◦E–145◦E, 0◦N– 
60◦N) at a 0.5◦ × 0.625◦ horizontal resolution with 47 vertical lev
els. We employed The MERRA-2 assimilated meteorological data 
to drive the simulations. The nonlocal scheme implemented by 
Lin and McElroy (59) was adopted for Boundary layer mixing. 
GEOS–Chem simulated detailed tropospheric oxidant-aerosol 
chemistry, including dry deposition (60–63) and wet deposition 
(64–66) of gases and particles. The simulation of aerosols included 
sulfate, nitrate, ammonium, primary and secondary organic aero
sols, BC, natural dusts in four advected size ranges, and sea salts. 
Global anthropogenic emissions follow the Community Emissions 
Data System (CEDS) inventory (67). For Asia, the MIX regional in
ventory (v2015-6) was utilized for anthropogenic emissions. 
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Natural emissions from lightning, vegetation, seabirds, and volca
noes were also included in this model. All emissions were man
aged by the Harvard–NASA Emissions Component (HEMCO) 
module (68). We ran the model from 1 March to 30 April in 2019 
and 2020. The simulation for March was used for spin-up, and 
that in April for analysis.

The snow, ice, and aerosol radiation (SNICAR) model employed 
the snow albedo theory (parameterization) based on Warren and 
Wiscombe (69) and the two-stream radiative approximation for 
multiple layers (70). SNICAR simulated the albedo and radiation 
absorption of snow and the radiation effect of aerosol components 
in each layer of snow by using ice refraction index data from 
Picard (71) and optical characteristics of dusts from the Sahara 
Desert (72), with the reflectivity of the underlying surface set at 
0.25.

In the GEOS–Chem–SNICAR model, BC and dust deposition on 
ice and snow were calculated through dry and wet deposition 
processes. The SNICAR and GEOS–Chem simulate four tracers of 
dust at different size bins. We established a mapping relationship 
between these tracers in the two models (Online Supplementary 
Table S3). SNICAR model contains two kinds of BC (externally 
and internally mixed) to present the enhancement of light absorp
tion by snow particles containing black carbon. These two kinds of 
BC tracers correspond to the dry deposition and wet deposition 
mass of BC in GEOS–Chem, respectively. Considering the influ
ence of snow cover fraction in the simulation process, the pollu
tant deposition fluxes simulated by the GEOS–Chem model have 
been multiplied by snow cover fraction before use. The snow cov
er fraction data were from MODSCAG retrievals.

In the scenario simulating the impact of human activities on 
snow pollution, we assumed that snow grain radii and thickness 
were not affected by anthropogenic pollution. The snow grain rad
ii data in GEOS–Chem–SNICAR were from the MODSCAG retriev
als, and the average absolute error of the snow grain radii in 
MODSCAG was 51 μm based on field measurements (53). Since 
the minimum snow grain radius allowed in SNICAR was 30 μm, 
the snow grain radii below 30 μm were set to 30 μm. The snow 
density was considered to be a constant value of 150 kg/m3. The 
snow thickness data were taken from the monthly synthetic 0.5◦ × 
0.625◦ MERRA-2 reanalysis data (73). The data are freely available 
from the Goddard Earth Sciences Data and Information Services 
Center (https://disc.gsfc.n-asa.gov/). In the regions with snow 
thickness less than 3 cm, the LAPs were considered to be fully in
tegrated into the ground layer, so RFSLAPs was not calculated in 
these regions. The solar radiation flux data were from a global 
high-resolution (3 h, 10 km) surface solar radiation dataset (74). 
We used the data at 12:00 local time every day in April 2018 and 
synthesized the April mean flux. The data are freely available 
from the National Tibetan Plateau Third Pole Environment Data 
Center (https://data.tpdc.ac.cn/zh-hans/data/). The Cubic spline 
interpolation was used for resampling of the snow thickness 
and solar radiation flux to a 500 m resolution.

Snowmelt estimates
Snowpack in grid cells with temperatures >0◦C was considered to 
be melting. Snowmelt was calculated as follows:

Snowmelt = RFSLAPs × A × g × Δt
􏽘

t

SWt × MTgt0t

SW12
(1) 

where A is the snow-cover area; g is enthalpy of fusion of water 

(334 J g−1); Δt is the temporal resolution of the radiation flux data 

(3 h); SWt is the radiation flux at local time t of each day; SW12 is 

the mean radiation flux at 12:00 local time of each day; and 
MTgt0t is a dummy variable of melting (0 when temperatures 
>0◦C and 1 otherwise). The range of t is from 0:00 on April 1 to 
24:00 on April 30, with an interval of 3 h. The RFSLAPs was simu
lated by the GEOS–Chem–SNICAR model. To get instantaneous 
values of RFSLAPs at the same time period as the MODDRFS result, 

the mean solar radiation flux at 12:00 local time every day SW12 

was used as input in the simulation. Therefore, the ratio of SWt 

to SW12 can be taken as the weight of RFSLAPs every 3 h.
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Supplementary material is available at PNAS Nexus online.
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