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A B S T R A C T   

Due to a lack of long-term observations in China, reports on historical ozone concentration are severely limited. In this study, by combining observation, reanalysis 
and model simulation data, XGBoost machine learning algorithm is used to correct the surface ozone concentration from CMIP6 climate model, and the long-term and 
large-scale surface ozone concentration of China during 1950–2014 is obtained. The long-term evolutions and trends of ozone and meteorological effects on 
interannual ozone variations are further analyzed. The results reveal that CMIP6 historical simulations have a large underestimation in ozone concentrations and 
their trends. The XGB-derived ozone are closer to observations, with R2 value of 0.66 and 0.74 for daily and monthly retrievals, respectively. Both the concentrations 
and exceedances of ozone in most parts of China have shown increasing trends from 1950 to 2014. The daily mean ozone concentration without climate change 
effects is estimated to be 117 ppb in the year 1950 averaged over China. It indicates that the increase in anthropogenic emissions of China has a significant 
contribution to ozone enhancement between 1950 and 2014. The higher ozone growth rates of XGB retrievals than those from the model indicate a regional surface 
ozone penalty due to the warming climate. The relatively significant increment in ozone are estimated in the Central and Western China. Seasonally, the ozone 
enhancement is largest in spring, indicating a shift in seasonal variation of ozone. Given the uncertainty in simulating historical ozone by climate model, we show 
that machine learning approaches can provide improved assessment of evolution in surface ozone, along with valuable information to guide future model devel
opment and formulate future ozone pollution prevention and control policies.   

1. Introduction 

Tropospheric ozone (O3) poses significant health risks (Anenberg 
et al., 2010; Fu and Tai, 2015; Qiu et al., 2020), and also adverse effects 
on agricultural production (Avnery et al., 2011; Li et al., 2022a,; Liu 
et al., 2024) and vegetation and ecosystems (Xu et al., 2020; Mills et al., 
2018; Musselman et al., 2006), from long-term exposure to high con
centrations. Additionally, ozone contributes to positive radiative forcing 
and plays a significant role in global warming (Stevenson et al., 2013; 
IPCC, 2021). The generation of ozone is not only dominated by pre
cursors of volatile organic compounds (VOCs) and nitrogen oxides (NOx) 
(Yan et al., 2021; Wang et al., 2017), but also significantly affected by 
specific meteorological factors such as high temperatures, strong radi
ation, and stable atmospheric conditions (Chen et al., 2020; Elminir, 
2005; Yan et al., 2018; Zhao et al., 2020). The meteorological influence 
becomes more pronounced in the context of decreasing anthropogenic 
emissions but increasing extreme weather events due to climate 

warming (Meehl et al., 2018), posing challenges to ozone control and 
prevention. 

Ozone pollution in China has become increasingly serious with a 
growth rate of 2.0 ppb yr− 1 for annual averages in recent years, and the 
burden of disease caused by ozone exposure has surpassed that of PM2.5 
(Wang et al., 2022; ,Zhang et al., 2023b). Some previous studies 
analyzed the changes in ozone concentration based on observations or 
model simulations. Chen et al. (2019) analyzed the observations from 12 
urban stations of Beijing and revealed an enhancement of 0.11 ppb yr− 1 

for the annual ozone concentrations. Gao et al. (2017) also showed an 
increase of 67% (1.1 ppb yr− 1) for observed ozone at an urban site of 
Shanghai. ,Li et al., 2022b analyzed observation data from the Pearl 
River Delta (PRD) region of China during 2006–2019 and showed an 
increase of ozone by up to 1.02 ppb yr− 1. Dang et al. (2021) analyzed the 
maximum daily 8-h average (MDA8) ozone during 2013–2017 in North 
China Plain (NCP) and Yangtze River Delta (YRD) using GEOS-Chem. 
They found a 0.58/1.74 ppb yr− 1 ozone concentration trend in the 
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NCP/YRD, with 49%/84% from meteorological contributions. Through 
an extensive literature review, Sicard (2021) has concluded that ozone 
concentrations increased in most regions of East Asia with an 
enhancement of 0.21 ppb yr− 1 at rural stations over the period 
2000–2010 and 0.68 ppb yr− 1 in cities between 2015 and 2014. Sicard 
et al. (2021) reported that the WRF-Chem model reproduced well the 
spatiotemporal of surface ozone concentrations across China. Tang et al. 
(2022) further combined the observations and WRF-Chem simulations 
to reveal a worsening trend (4.9 μg m− 3 yr− 1) of ozone pollution in YRD 
during 2014–2017. However, due to the lack of long-term observations, 
and the large computational resources required for atmospheric chem
istry models, it is difficult to achieve long-term large-scale surface ozone 
concentrations. Thus, the time scale of ozone variations in studies is 
mostly within recent 20 years, which is not enough to identify the 
long-term spatiotemporal evolution of ozone under the background of 
climate change. 

A few models in CMIP6 (Climate Model Intercomparison Project 
Phase 6) have provided long-term simulation data of surface ozone 
globally since 1950 (Griffiths et al., 2021; Wang et al., 2021; Song et al., 
2022). The CMIP6 is based on long transient simulations, but adds a 
new, more complete emission dataset, as well as the most up-to-date and 
complete or complex interactive models. The CMIP6 “Historical” simu
lations run from preindustrial times to the year 2014 (Eyring et al., 
2016; Griffiths et al., 2021). However, due to oversimplified parame
terizations, and inaccurate simulated meteorological field, the CMIP6 
models show large biases in simulating historical surface ozone (Grif
fiths et al., 2021; Liu et al., 2022). Griffiths et al. (2021) compared the 
CMIP6 model ensemble to five remote surface ozone stations with the 
longest available in situ sampling record (1957–present). They showed a 
significant error of surface ozone concentration. In China, surface ozone 
observations after 2000s have been seriously underestimated by the 
models of CMIP6 (Wang et al., 2021, 2022). These errors may propagate 
within complex Earth system models, and impeding a comprehensive 
and accurate understanding of Earth system interactions. Overall, 
further improvement and validation are needed for the surface ozone 
data from CMIP6. 

Thus, it is urgent to efficiently build continuous long-term high- 
precision surface ozone datasets to analyze its spatiotemporal change. 
There are six main approaches for inverting historical ozone data, 
namely statistical models, geostatistical models, machine learning al
gorithms, deterministic approach, chemistry-climate models, chemical 
reanalyses and ensemble approaches (Marco et al., 2022). Recently, 
artificial intelligence-based regression and clustering algorithms are 
gradually becoming popular methods with outstanding performance to 
predict future ozone changes and invert historical ozone levels (Zhang 
et al., 2023a,; Du et al., 2022; Zhang et al., 2022; Mao et al., 2022; Ma 
et al., 2021; Vu et al., 2019). The main algorithms include linear 
regression models, deep learning-based neural network regression 
models (Jia et al., 2020), support vector machines (SVM), and tree 
models. Linear regression models have simple principles and short 
computation time but are prone to overfitting (Trivedi et al., 2021). 
Neural network models can handle complex tasks well, but they require 
a long training time when faced with large training data and have high 
requirements for data preprocessing (Alzubaidi et al., 2021). SVM 
regression models can achieve more accurate multi-task classification 
but are difficult to handle large-scale training samples and have high 
computational costs (Chauhan et al., 2018). Decision tree models are 
simple and easy-to-use non-parametric models that are suitable for 
large-scale predictions, with fast computation speed, interpretable re
sults, strong robustness, and low data requirements (Myles et al., 2004). 
XGBoost is an efficient machine learning algorithm first proposed by 
Chen et al., in 2014. Liu et al. (2020) established a nationwide MDA8 O3 
prediction model based on the XGBoost (eXtreme Gradient Boosting) 
algorithm, combined with the ozone observations, meteorological pa
rameters, and land use data, achieving high prediction accuracy. Tsai 
(2018) applied XGBoost and used emission data, and meteorological 

monitoring data to construct features and to rolling forecast the hourly 
average ozone concentrations at four automatic monitoring stations of 
Xiamen City. It achieved a 90% forecast accuracy rate. 

In this study, we attempt to use the XGBoost algorithm to correct the 
historical surface ozone concentrations of China simulated by CMIP6. 
Meteorological reanalysis data and CMIP6 surface ozone simulations are 
used as precursor factors for training and inversion to obtain improved 
surface ozone concentrations of China from 1950 to 2014. Based on the 
obtained data, we will further analyze the long-term spatiotemporal 
evolution of surface ozone, the meteorological effects on the interannual 
ozone variation, and the spatiotemporal variation of ozone exceedance 
events. This study can provide scientific basis for ozone prevention and 
control and long-term stability in the context of climate change. 

2. Data and methods 

2.1. Data 

The meteorological variables (Table S1) from 1950 to 2022 are ob
tained from the European Centre for Medium-Range Weather Forecasts 
(ECMWF; https://www.ecmwf.int/en/forecasts/dataset/ecmwf-rean 
alysis-v5) Reanalysis version 5 (ERA5) dataset. The dataset provides 
hourly estimates with a spatial resolution of 0.25◦ × 0.25◦, and daily 
data are calculated by averaging the 24-hourly values. These meteoro
logical elements were significantly correlated with the surface ozone 
and were introduced into machine learning models to predict ozone 
concentration (Ma et al., 2021; Luo et al., 2022; Cheng et al., 2023; Deng 
et al., 2021). For simplicity, the variable names used as input to the 
XGBoost model are abbreviated as Table S1. 

The observed daily 8-h rolling average ozone concentration data 
(OBS) from 2014 to 2022 are obtained from the National Urban Air 
Quality Real-time Release Platform of the China Environmental Moni
toring Station (https://air.cnemc.cn:18007/) and archived at https 
://quotsoft.net/air (Wang, 2020; Tong et al., 2024). The network was 
established in 2013 as part of the Clean Air Action Plan. In 2013, there 
were 946 monitoring sites, which increased to 2024 sites by 2022. The 
start date of the dataset is May 13, 2014. The original unit of ozone 
concentration is μg m− 3, which is converted to ppb. 

The historical hourly surface ozone simulations during 1950–2014 
are conducted by the MPI-ESM1.2-HAM (MEH) climate model (Neu
bauer et al., 2019; https://www.wdc-climate.de/ui/cmip6?input=CM 
IP6.CMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM; 2.5◦ × 2.5◦), 
which is released in 2017. And the data are downloaded from the CMIP6 
(https://esgf-node.llnl.gov/search/cmip6/). The daily 8-h rolling 
average is calculated to correspond with the ozone observation data. The 
original unit of ozone concentration is mol/mol, which is also converted 
to ppb. 

In the quality control process, we use linear interpolation of near 
time or space points to deal with missing values and outliers. For this 
study, we hypothesize that air quality monitoring station can represent 
the air quality in the immediate area; current emission scenarios can be 
considered to be approximately equivalent to those since industrial and 
urban development; and the boundary layer height has been reflected in 
the temperature, pressure and other meteorological elements. 

2.2. Methods 

2.2.1. Site location extraction of grid data 
We use the spherical cosine formula to calculate the nearest grid 

point to a site: 

d=R⋅arccos
(
sin lats ⋅ sin latg + cos lats ⋅ cos latg ⋅ cos

(
long − lons

))
(1)  

Where R is the radius of the Earth, take 6371 km. Lats, latg, lons, and long 
are respectively station latitude, grid latitude, station longitude, and 
grid longitude (all in radians). The extracted ERA5 and MEH data of 
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these grid points are accordingly used as the meteorological data and the 
simulated ozone concentration of stations. 

2.2.2. XGBoost algorithm 
XGBoost is an implementation of gradient boosting methods, which 

make predictions by ensembling multiple decision trees (Chen et al., 
2014; Liu et al., 2020). Compared to traditional gradient boosting 
methods, XGBoost has made improvements and optimizations in several 
aspects. Firstly, it introduces regularization terms to prevent overfitting 
by controlling the model complexity. Secondly, XGBoost uses an 
approximate splitting algorithm to accelerate the training process. 
Moreover, XGBoost adopts parallel computing strategies, utilizing 
multi-threading or distributed computing resources to speed up the 
model training process. XGBoost algorithm has been widely used in the 
prediction and inversion of air quality (Calatayud et al., 2023; Liu et al., 
2020; Tsai, 2018). 

The core idea of the XGBoost algorithm is to iteratively optimize the 
predictive ability of the model. It uses decision trees as the basic model 
and continuously adds new decision trees while optimizing the weights 
of existing ones, so as to improve the overall prediction effect of the 
model. During training, XGBoost uses gradient boosting technique to 
minimize the loss function, gradually approaching the optimal solution. 
The objective function is: 

Obj(t) =
∑N

i=1
L
(

yi, ŷ
(t)
i

)
+
∑K

k=1

Ω(fk) (2)  

Where N is the number of samples, yi is the true value of the i-th sample, 
ŷi is the predicted value of the i-th sample, L is the loss function (dif
ference between the true value and the predicted value), Ω

(
fk
)

is the tree 
complexity, and K is the number of features. 

Perform Taylor second-order expansion on it: 

Obj(t) =
∑N

i=1

[

gift(xi)+
1
2
hift

2
(xi)

]

+Ω(fk)+Constant (3)  

Where gi, hi is the first and second derivative of the loss function 
respectively, ft(xi) is the structure value of tree xi in the t-th iteration. 

A tree is defined as: 

ft(x)=wq(x),w ∈ RT (4)  

Where q represents the structure of the tree; T is the number of leaf 
nodes; w is a one-dimensional vector of length T that represents the 
weight of a leaf node. 

The complexity of the tree is obtained by means of hyperparameters 
and weighting the number of leaf nodes of the tree and L2 norm of the 
node weight vector respectively, and is defined as: 

Ω(ft)= γT +
1
2

λ
∑T

j=1
w2

j (5) 

By substituting equations (4) and (5) into equation (3) and ignoring 
the constant, the objective function can be translated as: 

Obj(t) = γT +
∑T

j=1

[

wjGj +
1
2
w2

j
(
λ+Hj

)
]

(6)  

Where Gj =
∑

i∈Ij
gi, Hj =

∑

i∈Ij
hi. 

The minimum value is obtained when wj = −
Gj

Hj+λ, that is, the 
optimal solution is: 

Obj(t)∗ = γT −
1
2
∑T

j=1

G2
j

Hj + λ
(7) 

Formula (7) is the expression of XGBoost model, and the smaller the 

formula is, the better the model prediction effect is. 
In this study, the XGBoost model is trained with 80% datasets of the 

years 2014–2022 and tested with the other 20% datasets. And its per
formance is evaluated by comparing observations and predicted data of 
test datasets by coefficient of determination (R2), the means of the root 
mean squared error (RMSE) and normalized root mean squared error 
(NRMSE). 

2.2.3. Feature importance index 
There are three main ways to calculate the importance of features in 

XGBoost (Zhang et al., 2022): weight (the number of times a feature is 
used to segment the data across all trees), gain (the average gain of all 
split features), and coverage (the average coverage of all split features). 
In this study, the importance of features is measured by weight. The 
higher the importance of the feature, the greater the influence of the 
feature on the target learning value. 

2.2.4. Key focus regions 
Here we analyze the surface ozone at all stations in China, as well as 

five major urban agglomerations, namely, BTH, YRD, PRD, middle 
Yangtze River (MYR) and Chengdu-Chongqing region (CC), as shown in 
Fig. 1. These regions include provincial capitals, municipalities or other 
megacities with representative pollution levels in recent decades. 

3. Results and discussion 

3.1. Feature importance and model performance evaluation 

Although the XGBoost model do not make assumptions about the 
correlation between the input variables, from the perspective of model 
interpretability and model overfitting, the correlation between variables 
still has an impact. We select the features based on the Pearson corre
lation coefficient (Figs. S1a–c) for each pair of variables, as well as the 
feature importance scores (Fig. S1d). Spatiotemporally, the variables 
MEH, T2m, MT2m, and SSRD have a strong positive correlation with 
OBS (p < 0.01). In addition, variables MSL, TCC and SP have a negative 
correlation with OBS (p < 0.01). These findings are consistent with 
previous studies by Han et al. (2020), Jacob and Winner (2009), and 
Kavassalis and Murphy (2017). The correlations are more evident in 
Fig. S1b. Spatially, MEH, T2m, and MT2m show stronger positive cor
relation with OBS (0.83, 0.70, 0.68), while MSL shows stronger negative 
correlation with OBS (− 0.70). However, the temporal correlation is 
relatively unrepresentative. 

In terms of feature importance, we show that the rankings differ from 
the correlation coefficients. The top-ranking features are U10, V10, 
D2m, SP, and TCC. It has been reported that near-surface wind speed in 
China has been decreasing over the past 50 years (Ding et al., 2020; Guo 
et al., 2011; Chen et al., 2012). This decrease hampers the dispersion of 
pollutants and promotes the increase in surface ozone concentrations. 
This could explain why U10 and V10 are ranked high in terms of feature 
importance, which is similar to the analysis of Liu and Wang (2020). 

Fig. 2 shows the performance evaluation results of the final model. 
The XGB can effectively estimate daily ozone mixing ratios at most 
ground-based monitoring stations. On average, for daily retrievals, the 
XGB model shows a reliable overall accuracy, with a high cross- 
validated coefficients of determination (R2 = 0.66), a corresponding 
root-mean-square error (RMSE) of 37.89 ppb, and normalized root- 
mean-square error (NRMSE) of 0.06. The minor difference in the sta
tistical meterics between the day and month (R2 = 0.74; RMSE = 25.95 
ppb, NRMSE = 0.08) level indicates that averaging over time reduces the 
errors and there is no obvious temporal overfitting in this model. These 
results highlight the model’s capability in accurately predicting daily 
surface ozone levels at locations. 
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3.2. Spatiotemporal comparison of ozone in OBS, MEH and XGB from 
2014 to 2022 

Fig. 3a (3b) shows that MEH ozone simulations averaged over China 
(five key focus regions) significantly underestimate the measured daily 
(monthly) mean ozone concentrations. Spatially, average ozone mixing 
raitos for the years 2014–2022 at 95% of sites are underestimated by 
more than 60 ppb, as shown in Fig. 3c, d and 3f. Such large un
derestimations are effectively alleviated by the XGB model, with the 
biases declined to be − 9.12–9.37 ppb (− 6.87%–7.05%). In addition, the 
MEH model fails to capture the significant daily, monthly, and seasonal 
variations in observed ozone (Fig. 3a and b). The XGB can accurately 
reproduce daily, monthly, and seasonal variations in ozone, as 
confirmed by high correlations over China (r = 0.90) and over the 
selected regions (r = 0.50, 0.56, 0.53, 0.58, 0.58 for BTH, YRD, PRD, 
MYR, CC, respectively). 

To portray national variations, Fig. 3c, d and 3e present the average 
ozone in observations, MEH simulations, and XGB retrievals from 2014 
to 2022. The spatial distribution of observations shows a large amount of 
ozone in the East and Northwest China. High ozone concentrations over 
Northwest China may be strongly linked with high solar radiation over 

there. While large areas of high ozone concentration in the eastern re
gion are probably attributed to high anthropogenic emission sources. 
The MEH simulations do not reproduce the severe ozone pollution over 
the Central and Eastern China. However, the spatial pattern of XGB- 
derived ozone concentrations are highly consistent with surface ozone 
measurements (r = 0.90). 

3.3. Spatiotemporal changes of ozone concentration from 1950 to 2014 

During the period 1950–2014, ozone concentrations show an 
increasing trend (Fig. 4a). The average enhancements are 0.29 ppb yr− 1 

for China, 0.29 ppb yr− 1 for BTH, 0.30 ppb yr− 1 for YRD, 0.08 ppb yr− 1 

for PRD, 0.14 ppb yr− 1 for MYR, and 0.25 ppb yr− 1 for CC, respectively. 
These trends are roughly consistent with those reported in other studies, 
such as 0.28–1.02 ppb yr− 1 in the PRD from 2006 to 2019 (Li et al., 
2022b), 0.58 ppb yr− 1 in Hong Kong, China from 1994 to 2007 (Wang 
et al., 2009), and 0.51 ppb yr− 1 in Taiwan, China from 1994 to 2012 
(Chen et al., 2014). They are also comparable to the ozone trends 
observed in Japan from 1980 to 2005 (0.27 ppb yr− 1) (Nagashima et al., 
2017) and in some areas of South Korea from 2001 to 2018 (0.21–0.88 
ppb yr− 1) (Yeo and Kim, 2021), but lower than those in the North China 

Fig. 1. The locations of monitoring stations (gray dots) and the key focus regions of BTH, YRD, PRD, MYR, CC. The red dots represent the provincial capitals, 
municipalities or other megacities in these regions. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 2. Daily (a) and monthly (b) scatter density plot of the cross-validation result for the final estimator.  
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Fig. 3. The time series of daily mean ozone concentrations averaged over China (a) and monthly mean ozone averaged over five key focus regions (b) for OBS, MEH 
and XGB from 2014 to 2022. The ozone spatial distribution for OBS (c), MEH (d) and XGB (e) averaged over this period. Also shown are the differences between OBS 
and MEH (f), between XGB and OBS (g), between XGB and MEH (h). 

Fig. 4. The average annual (a) and monthly (b) ozone concentrations over China, BTH, YRD, PRD, MYR, CC simulated by XGBoost from 1950 to 2014, the shadow 
represents the standard deviation and the numbers represent the long-term trends. 
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Plain (1.58 ppb yr− 1 from 2006 to 2017) and eastern China (2.3 ppb yr− 1 

from 2013 to 2017) (Cheng et al., 2019; Li et al., 2019). Through an 
extensive literature review, Sicard (2021) has concluded that ozone 
concentrations increased in most regions of East Asia with an 
enhancement of 0.21 ppb yr− 1 at rural stations over the period 
2000–2010 and 0.68 ppb yr− 1 in cities between 2015 and 2014. How
ever, the upward trends simulated by MEH are 0.17 ppb yr− 1 (China), 
0.10 ppb yr− 1 (BTH), 0.15 ppb yr− 1 (YRD), 0.22 ppb yr− 1 (PRD), 0.14 
ppb yr− 1 (MYR) and 0.14 ppb yr− 1 (CC), respectively. This indicates that 
the MEH model also underestimates the long-term trend of ozone con
centration, except for the PRD and MYR. 

The XGB ozone results show that daily mean ozone concentration 
without climate change effects is estimated to be 117 ppb in the year 
1950 averaged over China (Fig. 4). This result is much higher than the 
baseline ozone concentrations of North America (<60 ppb, Emery et al., 

2012), Europe (<50 ppb, Derwent et al., 2018), and East Asia (<80 ppb, 
Lam and Cheung, 2022). It indicates that the increase in anthropogenic 
emissions of China has a significant contribution to ozone enhancement 
between 1950 and 2014. 

In addition, significant differences in the seasonal variations of ozone 
concentration exist due to latitude. For example, compared with the 
PRD, BTH is located at a higher latitude, showing a more significant 
change (up to 128 ppb; Fig. 4b) in ozone concentration due to the 
notable seasonal changes in temperature, solar radiation, and other 
meteorological factors. Conversely, the PRD, located at a lower latitude, 
shows a moderate seasonal variations (~60 ppb) in ozone concentration 
due to relatively stable temperature and solar radiation throughout the 
year. Previous studies have reached similar conclusions. Wang et al. 
(2022) demonstrated that the seasonal difference of ozone concentra
tion in BTH was about 60 ppb, while ~35 ppb in YRD and ~23 ppb in 

Fig. 5. The spatial distribution of the average ozone concentration of XGB retrievals in every five years from 1950 to 2014 (a–m), and the spatial distribution of 
ozone growth percentage from 1950 to 2014 (n), with the numbers represent the corresponding values of BTH, YRD, PRD, MYR, and CC regions. 

Y. Tong et al.                                                                                                                                                                                                                                    



Environmental Pollution 357 (2024) 124397

7

PRD. Lu et al. (2019) showed that the seasonal difference of ozone 
concentration was approximately 95 ppb in Beijing (at BTH) and 70 ppb 
in Shanghai (at YRD). Han et al. (2020) showed that the monthly dif
ferences of daily mean ozone concentration of BTH, YRD and PRD were 
about 80 μg m− 3, 40 μg m− 3 and 25 μg m− 3 respectively, daily maximum 
8-h average ozone concentration monthly differences were about 115 
μg m− 3, 75 μg m− 3, 55 μg m− 3, respectively. 

Fig. 5a–m shows the spatial distribution of ozone concentration 
averaged over every five years from 1950 to 2014. From 2000 to 2014, 
the surface ozone concentrations of BTH, PRD, YRD, MYR and other 
regions in Southeastern China decrease slightly due to the imple
mentation of emission policies such as the Clean Air Actions, which 
reduced the emission of precursors such as VOCs (Sicard et al., 2023; 
Zheng et al., 2018). Moreover, the decline of annual mean site-based 
ozone concentrations during the years 2000–2014 is attributed to 
rapid decrease of winter ozone shown by XGB retrievals (Fig. 6) and 
MEH simulations (Fig. 7a, Fig. S2). Such winter ozone decrease is 
probably due to reaction with NO (i.e., ozone titration) these years 
(Fig. S3), during which excessive anthropogenic NOx emissions are 
emitted with centralized heating in winter as well as overall rapid 
development. 

The ozone concentration in the CC has been relatively low with an 
annual mean value from 99 ppb (1950–1954) to 118 ppb (2010–2014), 
but has increased most significantly during this period with a growth 
rate of 22.06% (Fig. 5n). In the regions of BTH, YRD, and the areas 
between them, ozone concentration increased from 1950 (BTH: 116 
ppb; YRD: 123 ppb) to 1999 (BTH: 144 ppb; YRD: 141 ppb), then slightly 
decreased from 2000 to 2014 (BTH: 137 ppb; YRD: 139 ppb). 

The ozone of MYR also experiences similar changes, but the upward 
and trends of ozone for the period 1950–2009 (118 ppb versus 129 ppb) 
are moderate, and the decline from 2010 to 2014 is less obvious. The 
changes of ozone concentration in the PRD are relatively even less 
pronounced, with an overall ozone increase of 4.74% from 1950 to 
2014. From observations, Xu et al. (2008) reported a moderate decrease 
of -(0.56 ± 0.23) ppb yr− 1 (p < 0.05) in ozone measurements 
(1991–2006) of a background station (Lin’an). Xu et al. (2020) applied a 
Mann-Kendall (M-K) test to analyze the ozone trends during 2004–2016 
at eight observation sites in China. They found that there was a signif
icant increase (2% yr− 1) in ozone at the background site (Shangdianzi) 
in North China Plain, a moderate increase at the global baseline site in 

western China, a significant decrease at the edge of northwest China, 
and almost no trend at other sites. 

The seasonal variations are depicted in Fig. 6. During the period of 
1950–2014, the ozone concentration increases at rates of 0.46 ppb yr− 1, 
0.31 ppb yr− 1, 0.23 ppb yr− 1, and 0.14 ppb yr− 1 in spring, summer, 
autumn, and winter, respectively. These long-term growth rates are 
lower than the research conducted by Chen et al. (2019) on the seasonal 
trends of ozone concentration from 2006 to 2016, and the results re
ported by Wang et al. (2022) for the period of 2014–2017. The highest 
growth rate in spring indicates a shift in seasonal varation of ozone, with 
that the high-level ozone concentration in summer gradually advances 
to spring. Schnell et al. (2016) have also reported that the seasonal 
variation of historical surface ozone in most parts of East Asia is char
acterized by the highest in spring. In addition, Cooper et al. (2010) have 
reported that in recent years (since 1980s), the ozone in Europe and the 
United States has increased significantly in spring, and the peak value of 
ozone has shifted to spring. 

From the 1950s to the 2010s, due to the climate change, China has 
experienced a decrease in cloud cover (10.10%) and precipitation 
(24.12%), an enhancement in solar radiation (7.66%) and surface air 
temperature (0.49%), a weakened wind (28.19%), and a increased 
surface pressure (0.12%), as shown in Fig. 7b–h. Since the surface has 
received more heat and radiation, the ozone photochemical production 
over both urban and remote regions would be enhanced in this period, 
especially under the conditions of wide range extreme heat waves and 
strong radiation during the summertime. And the still wind could slow 
down the transportation. The XGB-derived ozone show a total ozone 
growth of 17.21 ppb, while the MEH-simulated ozone reproduce an 
increase of 9.52 ppb between 1950 and 2014. These results indicate a 
regional surface ozone penalty due to the warming climate in the 
absence of changes in anthropogenic polluting activities. Over polluted 
regions of the world, previous studies also projected a general increase 
of surface ozone levels in a future warmer climate, particularly during 
summertime (Fu and Tian, 2019; Zanis et al., 2022). Jing et al. (2017) 
showed that since 2008, ozone in the Midwest of the United States is 
more temperature-dependent than that in 1999–2007, and more 
frequent dry and stagnant weather also jointly enhances ozone con
centration. Watson et al. (2016) found that a climate increase of 2 ◦C 
would lead to a change in summer ozone concentration of − 0.1–0.8 ppb 
over Europe. 

Fig. 6. Seasonal surface ozone concentration averaged over every five years from 1950 to 2014 (spring for MAM, summer for JJA, autumn for SON, winter for DJF) 
after bias–corrected by XGBoost, the bar represents standard error and the fitting line represents the long-term trend. 
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3.4. Spatiotemporal changes of ozone exceedances 

Fig. 8 presents the statistical analysis of the excessive ozone levels for 
each year during the study period. The number of events with daily 
mean ozone concentration exceeding (OCE) 70 μg m− 3 (ozone standard 
defined by WHO) shows a fluctuating upward trend averaged over 
China. The average OCE events increase from 1950s to 2010s. The 
maximum average OCE events of China is 54, which was occurred in 
2008 and 2013. The annual mean ozone averaged over OCE events also 
shows a fluctuating upward pattern, with the highest value of 185.07 
ppb in 2012. 

Fig. 9a–m demonstrates the spatial patterns in average OCE events 
for a year in every five years from 1950 to 2014. From 1950 to 1979, the 
Eastern and Central regions generally exhibit higher OCE events 
compared to the Western region, especially in the case of the East China 
region. However, OCE events at stations in the Western region show a 
sharp increase, from below 20 events in the period of 1950–1954, and 
surged to over 260 events in the period of 2010–2014. Overall, there is a 

clear upward trend in OCE events of China during the years 1950–1999, 
particularly pronounced in regions of North and Western China. Since 
2000, the East China shows a slight decline in OCE events, while the 
Tibetan Plateau and Western regions continue to experience relatively 
high OCE events. In the years 2010s, more than half of the stations have 
over 100 OCE events for a year, which indicates a high level of ozone 
pollution across the country. The regions with a larger amount of OCE 
events are mainly concentrated in the East China, Tibetan Plateau, and 
Western China, indicating that these regions suffers the most severe 
ozone pollution in China. South China, Southwest China and Northeast 
China have relatively fewer OCE events than other regions. In terms of 
the growth percentage from 1950 to 2014, the growth percentage of 
OCE events in Central and Western regions is significantly higher than 
that in Eastern regions (Fig. 9n). 

Among the key focus regions, the BTH and YRD regions suffer rela
tively more severe OCE events, followed by PRD and MYR regions, with 
the relative lowest OCE events occurring in the CC region. In BTH and 
YRD, OCE events increased from 1950 (BTH: 81; YRD: 85) to 1999 (BTH: 
163; YRD: 148), then declined from 1999 to 2014 (BTH: 136; YRD: 133). 
OCE events in the PRD and MYR regions remained relatively stable from 
1950 to 1999 (PRD: 96–102; MYR: 96–97) but experienced growth from 
2000 to 2014 (PRD: 117; MYR: 118). The CC region’s OCE events 
showed a more moderate variation, consistently following a fluctuating 
upward trend from 1950 to 2014. 

4. Conclusions 

In this study, we use the XGBoost algorithm to correct surface ozone 
concentrations simulated by the MEH model over a long period of time 
and across the entire country. This correction yields results that are 
closer to actual observations and allows for a more accurate analysis of 
the spatiotemporal variations in surface ozone concentrations in China 
and five urban agglomerations from 1950 to 2014. We also discuss the 
spatiotemporal evolution of ozone exceedances and analyze their 
possible reasons. 

The MEH model severely underestimates both the magnitude and 
trend of surface ozone concentrations, with approximately 95% of sta
tions showing an underestimation of around 40%. Using the XGBoost 
algorithm for inversion or extrapolation is reasonable, with R2 value of 
0.66 and 0.74 for daily and monthly retrievals, respectively. Based on 
the XGB-derived surface ozone, concentrations in most parts of China 
have shown an increasing trend from 1950 to 2014, with growth rates 
ranging from 0.08 ppb yr− 1 to 0.30 ppb yr− 1. The most significant 

Fig. 7. Annual variation (a–h) for MEH (red represents summer (JJA), blue represents winter (DJF) and black represents the whole year), U10, V10, T2m, SP, SSRD, 
TCC and TP of ERA5 from 1950 to 2014 respectively. The shadow indicates the standard error and the dashed line indicates the long-term trend. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. The number of OCE events (blue bar) with ozone concentration 
exceeding the standard (daily mean ozone≥70 μg m− 3) per year averaged over 
all stations from 1950 to 2014 after bias–corrected by XGBoost. The average 
ozone concentration of OCE events in each year (orange line). The blue dashed 
line is the fitting line of OCE events. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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increment in ozone is estimated in the CC region. Seasonally, the ozone 
enhancement is largest in spring and smallest in winter, with increasing 
trends ranging from 0.14 ppb yr− 1 to 0.46 ppb yr− 1. The frequency and 
concentration of OCE events have increased significantly over time. 
During the period from 1950 to 1954 and 2010 to 2014, OCE events 
increased by 76.89%, with a concentration increase of 6.23 ppb. 

Through this work, we can understand the background concentra
tion level of surface ozone in the period of weak human influence, and 
provide a certain reference for understanding the long-term change 
trend of surface ozone concentration and future ozone pollution pre
vention and control. Under the background of climate warming, the 
increasing frequency of weather and climate events such as extreme 
high temperature, heat waves and atmospheric stability will greatly 
reduced the efforts of anthropogenic emission reduction. The accurate 
prediction of meteorological conditions should work together with the 
accurate reduction of anthropogenic emissions to achieve long-term 

stability of ozone. However, in this study, due to the lack of data, we 
did not fully consider the specific situation of historical emissions in 
China, more accurate results, higher spatiotemporal resolution, and 
more efficient methods will require further research in the future. 
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Marécal, V., Nyiri, A., Sobolowski, S., Siour, G., 2016. Impact of emissions and +2 ◦C 
climate change upon future ozone and nitrogen dioxide over Europe. Atmos. 
Environ. 142, 271–285. https://doi.org/10.1016/j.atmosenv.2016.07.051. 

Xu, X., Lin, W., Wang, T., Yan, P., Tang, J., Meng, Z., Wang, Y., 2008. Long-term trend of 
surface ozone at a regional background station in eastern China 1991–2006: 
enhanced variability. Atmos. Chem. Phys. 8 (10), 2595–2607. https://doi.org/ 
10.5194/acp-8-2595-2008. 

Xu, X., Lin, W., Xu, W., Jin, J., Wang, Y., Zhang, G., Zhang, X., Ma, Z., Dong, Y., Ma, Q., 
2020. Long-term changes of regional ozone in China: implications for human health 
and ecosystem impacts. Elem Sci Anth 8. https://doi.org/10.1525/elementa.409. 

Yan, Y., Lin, J., He, C., 2018. Ozone trends over the United States at different times of 
day. Atmos. Chem. Phys. 18 (2), 1185–1202. https://doi.org/10.5194/acp-18-1185- 
2018. 

Yan, Y., Zheng, H., Kong, S., Lin, J., Yao, L., Wu, F., Cheng, Y., Niu, Z., Zheng, S., 
Zeng, X., 2021. On the local anthropogenic source diversities and transboundary 
transport for urban agglomeration ozone mitigation. Atmos. Environ. 245, 118005 
https://doi.org/10.1016/j.atmosenv.2020.118005. 

Yeo, M.J., Kim, Y.P., 2021. Long-term trends of surface ozone in Korea. J. Clean. Prod. 
294, 125352 https://doi.org/10.1016/j.jclepro.2020.125352. 

Zanis, P., Akritidis, D., Turnock, S., Naik, V., Szopa, S., Georgoulias, A.K., Bauer, S.E., 
Deushi, M., Horowitz, L.W., Keeble, J., 2022. Climate change penalty and benefit on 
surface ozone: a global perspective based on CMIP6 earth system models. Environ. 
Res. Lett. 17 (2), 024014 https://doi.org/10.1088/1748-9326/ac4a34. 

Zhang, A., Fu, T., Feng, X., Guo, J., Liu, C., Chen, J., Mo, J., Zhang, X., Wang, X., Wu, W., 
2023a. Deep learning-based ensemble forecasts and predictability assessments for 
surface ozone pollution. Geophys. Res. Lett. 50 (8) https://doi.org/10.1029/ 
2022GL102611. 

Zhang, B., Zhang, Y., Jiang, X., 2022. Feature selection for global tropospheric ozone 
prediction based on the BO-XGBoost-RFE algorithm. Sci. Rep. 12 (1) https://doi.org/ 
10.1038/s41598-022-13498-2. 

Zhang, Q., Yin, Z., Lu, X., Gong, J., Lei, Y., Cai, B., Cai, C., Chai, Q., Chen, H., Dai, H., 
2023b. Synergetic roadmap of carbon neutrality and clean air for China. 
Environmental Science and Ecotechnology 16, 100280. https://doi.org/10.1016/j. 
ese.2023.100280. 

Zhao, S., Yin, D., Yu, Y., Kang, S., Qin, D., Dong, L., 2020. PM2.5 and O3 pollution during 
2015–2019 over 367 Chinese cities: spatiotemporal variations, meteorological and 
topographical impacts. Environ. Pollut. 264, 114694 https://doi.org/10.1016/j. 
envpol.2020.114694. 

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., 2018. 
Trends in China’s anthropogenic emissions since 2010 as the consequence of clean 
air actions 18 (19), 14095–14111. https://doi.org/10.5194/acp-18-14095-2018. 

Y. Tong et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.atmosenv.2021.118869
https://doi.org/10.1016/j.atmosenv.2021.118869
https://doi.org/10.1038/s43016-023-00882-y
https://doi.org/10.1016/j.envint.2020.105823
https://doi.org/10.5194/acp-20-6305-2020
https://doi.org/10.5194/acp-22-12543-2022
https://doi.org/10.5194/acp-19-8339-2019
https://doi.org/10.1016/j.atmosenv.2022.119370
https://doi.org/10.1016/j.atmosenv.2022.119370
https://doi.org/10.1016/j.envpol.2021.116635
https://doi.org/10.1016/j.envpol.2021.116635
https://doi.org/10.1016/j.buildenv.2022.109087
https://doi.org/10.1016/j.envres.2022.113048
https://doi.org/10.1088/1748-9326/aabcdc
https://doi.org/10.1525/elementa.302
https://doi.org/10.1016/j.atmosenv.2005.10.064
https://doi.org/10.1016/j.atmosenv.2005.10.064
https://doi.org/10.1002/cem.873
https://doi.org/10.1002/cem.873
https://doi.org/10.5194/acp-17-8231-2017
https://doi.org/10.22033/esgf/cmip6.1622
https://doi.org/10.1016/j.envres.2019.109095
https://doi.org/10.1016/j.envres.2019.109095
https://doi.org/10.1002/2016GL068060
https://doi.org/10.1002/2016GL068060
https://doi.org/10.1016/j.coesh.2020.100226
https://doi.org/10.1016/j.scitotenv.2022.160064
https://doi.org/10.1016/j.atmosenv.2020.118004
https://doi.org/10.1016/j.atmosenv.2020.118004
https://doi.org/10.1016/j.atmosenv.2022.119126
https://doi.org/10.5194/acp-13-3063-2013
https://doi.org/10.3389/fenvs.2022.836191
https://doi.org/10.1007/s00376-023-3156-9
https://doi.org/10.1007/s00376-023-3156-9
https://doi.org/10.1007/978-3-030-66218-9_40
https://doi.org/10.1007/978-3-030-66218-9_40
https://doi.org/10.16868/j.cnki.1674-6252.2018.02.078
https://doi.org/10.16868/j.cnki.1674-6252.2018.02.078
https://doi.org/10.5194/acp-19-11303-2019
https://doi.org/10.5194/acp-19-11303-2019
https://doi.org/10.5194/acp-9-6217-2009
https://doi.org/10.5194/acp-9-6217-2009
https://doi.org/10.1016/j.scitotenv.2016.10.081
https://doi.org/10.1016/j.scitotenv.2016.10.081
https://doi.org/10.5194/acp-22-8935-2022
https://quotsoft.net/air
https://doi.org/10.1016/j.atmosres.2021.105735
https://doi.org/10.1016/j.atmosres.2021.105735
https://doi.org/10.1016/j.atmosenv.2016.07.051
https://doi.org/10.5194/acp-8-2595-2008
https://doi.org/10.5194/acp-8-2595-2008
https://doi.org/10.1525/elementa.409
https://doi.org/10.5194/acp-18-1185-2018
https://doi.org/10.5194/acp-18-1185-2018
https://doi.org/10.1016/j.atmosenv.2020.118005
https://doi.org/10.1016/j.jclepro.2020.125352
https://doi.org/10.1088/1748-9326/ac4a34
https://doi.org/10.1029/2022GL102611
https://doi.org/10.1029/2022GL102611
https://doi.org/10.1038/s41598-022-13498-2
https://doi.org/10.1038/s41598-022-13498-2
https://doi.org/10.1016/j.ese.2023.100280
https://doi.org/10.1016/j.ese.2023.100280
https://doi.org/10.1016/j.envpol.2020.114694
https://doi.org/10.1016/j.envpol.2020.114694
https://doi.org/10.5194/acp-18-14095-2018

	Machine-learning-based corrections of CMIP6 historical surface ozone in China during 1950–2014
	1 Introduction
	2 Data and methods
	2.1 Data
	2.2 Methods
	2.2.1 Site location extraction of grid data
	2.2.2 XGBoost algorithm
	2.2.3 Feature importance index
	2.2.4 Key focus regions


	3 Results and discussion
	3.1 Feature importance and model performance evaluation
	3.2 Spatiotemporal comparison of ozone in OBS, MEH and XGB from 2014 to 2022
	3.3 Spatiotemporal changes of ozone concentration from 1950 to 2014
	3.4 Spatiotemporal changes of ozone exceedances

	4 Conclusions
	Ethical approval
	Consent to participate
	Consent to publish
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


