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Poor air quality is a leading cause of global disease burden1,2. 
Considerable evidence has consistently indicated that mater-
nal exposure to air pollution contributes to increased risks of 

adverse birth outcomes such as low birthweight3, preterm birth3,4, 
gestational hypertension and preeclampsia5,6, and may also affect 
maternal health during pregnancy and over the course of a woman’s 
life. Approximately 28% of pregnant women risk a loss of pregnancy 
in developed countries7. Missed abortion in the first trimester 
(within 14 weeks of gestation; MAFT), which is characterized by 
the arrest of embryonic or fetal development8, is a common com-
plication of pregnancy. MAFT may occur in up to 15% of all clini-
cally recognized pregnancies, especially in developing countries9–11. 
Determining whether or not the risk of MAFT responds to air qual-
ity conditions is important, as a pregnancy loss is devastating for the 
expectant parents12.

Few quantitative studies exist that explore how maternal air 
pollution exposure affects the MAFT risk. Several studies13,14 
have been carried out in high-income countries with relatively 
good air quality. A study15 conducted in Tianjin, China using the 
official air pollution monitoring data from 2001 to 2007 found 
that there were possible adverse impacts of air pollution on 
pregnancy outcomes; however, data during this period are unre-
liable16. In contrast, data collected since 2013, when the govern-
ment enforced strict regulations to ensure air quality, are more 
reliable. Quantifying the relationship between maternal exposure 
to air pollutants and MAFT requires detailed, difficult-to-obtain 
information on personal exposures and confounders for a wide 
range of pollution exposures.

We investigated how the MAFT risk varies with the level of 
maternal ambient air pollution exposure using air pollution mea-
surements and clinical data from pregnant women living in Beijing, 
China. Air pollutants considered for the study included particu-
late matter (PM) with diameter below 2.5 μm (PM2.5), sulfur diox-
ide (SO2), ozone (O3) and carbon monoxide (CO). Given its size, 
Beijing has diverse terrains (Supplementary Fig. 1) and a consid-
erable range of air quality conditions across space and time17. The 
spatial distribution of daily mean concentrations of PM2.5 in Beijing, 
averaged from 2008 to 2017, indicates that the temporally average 
daily (Supplementary Fig. 2a) and maximum daily (Supplementary 
Fig. 2b) concentrations exceeded 100.0 μg m−3 at several locations, 
although the minimum concentrations (Supplementary Fig. 2c) 
were below 6.0 μg m−3 in many places. Daily mean concentrations 
of ambient SO2, O3 and CO in Beijing also showed large spatiotem-
poral variabilities (Supplementary Figs. 3–5). In addition, while 
Beijing is a well-developed region, it still has large rural areas with 
relatively low household income, such as those in Fangshan District 
(Supplementary Fig. 1). Considering the above factors, the expo-
sure–response relationship between air pollution and MAFT risk 
derived from Beijing may be representative of the general situation 
in China.

We collected the clinical records of 255,668 pregnant women in 
Beijing from 2009 to 2017. The dataset contained information on 
maternal education level, occupation, residence and working places, 
and last menstrual date. Following earlier work18, we computed the 
air pollutant exposure level of each pregnant woman on the basis 
of measurements at the nearest air monitoring stations from her 
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residential and working places (Methods). This choice, as opposed 
to previous studies that only considered the distance to residence 
place19–21, was preferred because most pregnant women in the first 
trimester still went to work.

We used a logistic regression model and a restricted cubic spline 
model to explore the quantitative relationship between the MAFT 
risk and maternal exposure to air pollutants, including PM2.5, SO2, 
O3 and CO, among the 255,668 pregnant women. Potential con-
founders, including maternal age at pregnancy, occupation, spatial 
dependence and ambient air temperature were controlled in the 
models. We performed several robustness analyses: (1) we tested 
whether the exposure–response association was characterized by 
different lag periods; (2) we assessed the exposure–response rela-
tionship in individual concentration ranges for each air pollutant; 
and (3) we conducted a restricted cubic spline analysis to character-
ize the morphology of the nonlinear association between air pollut-
ant exposure and the MAFT risk. Model results are reported as odds 
ratios (ORs)22 and their 95% confidence intervals (CIs).

Results
We grouped pregnant women by age at conception (five groups), 
occupation (two groups) and air temperature (four groups). Among 
the participating pregnant women, 17,497 (6.8%) experienced 
MAFT. We took the Bayes factor as a measure of evidence for the 
association between MAFT in different subgroups and air pollution. 
As a summary measure, the Bayes factor gave an alternative to the 
P-value for the ranking of associations or for the flagging of associa-
tions as significant23. The Bayes factor BF10 > 30 represents strong 

evidence for the associations between the MAFT occurring in the 
subgroups and air pollution24,25 (Supplementary Table 1). Women 
older than 39 years at conception or female farmers and blue-collar 
workers had higher percentages of MAFT than their counterparts 
did. In all groups, maternal exposure to each air pollutant was asso-
ciated with the risk of MAFT.

Associations between MAFT risk and air pollution exposure. We 
used a logistic regression model to calculate the ORs and 95% CIs 
for the association between MAFT risk and exposure to each pollut-
ant. We adjusted for potential confounders including maternal age, 
occupation, spatial dependence and ambient temperature. As we 
estimated the association between PM2.5 and MAFT risk, we did not 
control for other air pollutants (SO2, O3 and CO) in the model. The 
main reason is that the period of the available PM2.5 data (from 2008 
to 2017) was different from those of other pollutants (from June 
2014 to December 2017). Moreover, the correlation between PM2.5 
and other two pollutants (SO2 and O3) is not high (Supplementary 
Table 2), thus controlling for these two pollutants had a little effect 
(Supplementary Table 3). As we estimated the association between 
O3 and the MAFT risk, we controlled for CO and SO2 but not PM2.5, 
given the strong correlation between PM2.5 and CO (Supplementary 
Tables 2 and 4). Similarly, as we estimated the association between 
SO2 (CO) and the MAFT risk, we controlled for CO (SO2) and O3 
but not PM2.5.

We investigated the correlation between maternal exposures 
in different time periods and the incidence of MAFT, to test the 
effect of time lag between pollution exposure and MAFT. Seven 
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Fig. 1 | The ORs and 95% CIs of MAFT associated with maternal exposure to each pollutant in Phase 4. a–d, The OR of MAFT with respect to PM2.5 (a), 
SO2 (b), O3 (c) and CO (d) exposure. Confounders were controlled here.
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time windows of exposures (Phases 1–7; Methods) were consid-
ered. The risk of MAFT was associated with PM2.5 exposure in all 
phases (Supplementary Fig. 6a). A 10.0 μg m−3 increase in the tem-
porally averaged PM2.5 concentration in Phase 4 (the period from 
90 d before the first day of the last menstrual period (LMP) to the 
last exposure time (LET) of the pregnant women with MAFT; see 
Methods for definition of LET) was associated with the greatest 
risk of MAFT, when compared to the ORs from other phases. The 
MAFT risk also changed in different time windows for SO2, O3 and 
CO exposures and each had a peak risk with respect to Phase 4 
(Supplementary Fig. 6). In the following, exposure to each air pol-
lutant averaged in Phase 4 was used for further analysis.

Due to lag in air pollutant exposure, PM2.5 data for the years 
2008–2017 (Methods) were combined with the clinical data 
from 2009–2017 for analysis. Maternal PM2.5 exposure in Phase 
4 was categorized into five concentration ranges separated by the 
25th, 50th, 75th and 95th percentiles of the PM2.5 concentrations: 
<63.2 μg m−3, 63.2–71.4 μg m−3, 71.5–93.3 μg m−3, 93.4–130.2 μg m−3 
and >130.2 μg m−3. An increase in ambient PM2.5 concentrations 
was significantly associated with an increased MAFT risk (Fig. 1). 
For a 10.0 μg m−3 increase in PM2.5 concentrations, the OR of MAFT 
(after adjusting for the confounders) was 1.08 (95% CI, 0.98–1.18) 
for PM2.5 concentrations <63.2 μg m−3, 1.13 (95% CI, 1.03–1.23) 
for PM2.5 of 63.2–71.4 μg m−3, 1.28 (95% CI, 1.14–1.42) for PM2.5 
of 71.5–93.3 μg m−3, 1.39 (95% CI, 1.23–1.55) for PM2.5 of 93.4–
130.2 μg m−3 and 1.51 (95% CI, 1.33–1.69) for PM2.5 >130.2 μg m−3. 
The increase of the OR with increasing PM2.5 concentrations was 

evident. Results based on PM2.5 data over the period June 2014–
December 2017 were similar (Supplementary Table 5).

SO2, O3 and CO data were available from 2014 to 2017 
(Methods), thus we assessed the correlation between MAFT and 
each of SO2, O3 and CO over the same period. SO2 concentration 
exposures ranged from 2.6 μg m−3 to 44.0 μg m−3. Maternal SO2 
exposure in Phase 4 was categorized into four concentration ranges 
separated by the 25th, 50th and 75th percentiles of the SO2 con-
centrations. For a 10.0 μg m−3 increase in SO2 exposure, the ORs 
for SO2 exposure in Phase 4 were 1.17 (95% CI, 1.10–1.22) for SO2 
concentrations <7.1 μg m−3, increasing to 1.29 (1.22–1.36) for SO2 
of 7.1–11.4 μg m−3, 1.41 (1.33–1.49) for SO2 of 11.5–19.5 μg m−3 and 
1.52 (1.44–1.60) for SO2 concentrations >19.5 μg m−3 (Fig. 1b).

Maternal O3 exposure in Phase 4 was categorized into four con-
centration ranges separated by the 25th, 50th and 75th percentiles of 
the O3 concentrations. For a 10.0 μg m−3 increase in O3 exposure, the 
ORs for O3 exposure in Phase 4 were 1.07 (95% CI, 1.00–1.14) for O3 
concentrations <27.3 μg m−3, increasing to 1.09 (1.03–1.15) for O3 
of 27.3–46.2 μg m−3, 1.14 (1.06–1.22) for O3 of 46.3–74.4 μg m−3 and 
1.23 (1.15–1.31) for O3 >74.4 μg m−3 (Fig. 1c).

Maternal CO exposure in Phase 4 was categorized into four con-
centration ranges separated by the 25th, 50th and 75th percentiles of 
the CO concentrations. For a 1.0 mg m−3 increase in CO exposure, 
the ORs for CO exposure in Phase 4 were 1.05 (95% CI, 1.03–1.07) 
for CO concentrations <0.9 mg m−3, increasing to 1.08 (1.05–1.11) 
for CO of 0.9–1.1 mg m−3, 1.13 (1.09–1.17) for CO of 1.2–1.9 mg m−3 
and 1.17 (1.12–1.22) for CO >1.9 mg m−3 (Fig. 1d).
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Fig. 2 | The ORs and 95% CIs of the MAFT risks associated with maternal exposure to different average annual air pollutant concentrations. a–d, 
Association of the MAFT with a 10.0 μg m−3 increase in PM2.5 exposure from 2014 to 2017 (a), a 10.0 μg m−3 increase in SO2 exposure from 2015 to 2017 
(b), a 10.0 μg m−3 increase in O3 exposure from 2015 to 2017 (c) and a 1.0 mg m−3 increase in CO exposure from 2015 to 2017 (d). Note that since the 
datasets of SO2, O3 and CO before June 2014 contained many missing values, for these pollutants we only used the pollutant data from June 2014 to 
December 2017 and thus the MAFT data from 2015 to 2017.
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We further combined a restricted cubic spline model and a 
logistic regression model to construct the OR curve for MAFT 
and maternal pollution exposure for each pollutant, after other 
factors were controlled (Supplementary Fig. 7). The relationship 
between pollution exposure and the risk of MAFT was enhanced 
with increased pollutant concentrations, consistent with the above 
(logistic model based) findings.

Since 2013, the Chinese government has issued new rules to 
reduce atmospheric pollution. Air pollutant concentrations have 
substantially decreased since 2014 (Supplementary Fig. 8)16. The 
MAFT risk has also decreased since 2013 (Fig. 2), which further 
suggests the strong quantitative link between maternal air pollution 
exposure and MAFT risk.

Maternal characteristics, pollution exposure and risk of MAFT. 
Pregnant women with different sociodemographic status might be 
exposed to different air pollution levels and, therefore, could be 
subject to different MAFT risks. Older pregnant women (>39 years 
old), female farmers and blue-collar workers and those conceiving 
in low temperature (<5 °C) had higher ORs for the risk of MAFT 
associated with air pollution exposure when compared to their 
counterparts (for example, pregnant women aged 25–39 years) 
(Supplementary Fig. 9). In China, farmers and blue-collar work-
ers usually had a low socioeconomic status and engaged in outdoor 
work21. Female farmers or female blue-collar workers were more 
exposed to ambient air pollution and thus subjected to a higher OR 
and a higher MAFT risk than office workers (as discussed above, the 
OR increases with increasing pollutant concentrations). This result 
was consistent with the previous finding suggesting that wealthier 
households were better able to avoid the adverse health impacts of 
hazardous environmental exposures26–28.

Discussion
On the basis of a large record of maternal clinical data and a broad 
range of air pollution concentrations, this study has demonstrated 
a quantitative association between ambient air pollution exposure 
and risk of MAFT. Previous studies have also indicated that mater-
nal long-term exposure to air pollution may mean a higher likeli-
hood of abortion/miscarriage, stillbirth and birth defects7,29,30.

We investigated several possible causal mechanisms to explain 
this linkage. Maternal long-term exposure to PM2.5 allows the pol-
lutant to cross the maternal–fetal blood barrier and ultimately 
perturb fetal growth and development7,31. Pollutants entering the 
bloodstream of a fetus might interact with its tissue components to 
produce pathological effects17, leading to irreversible damage to the 
dividing cells of the fetus and triggering hypoxic harm or immu-
nomediated injury during critical periods of development32,33. Air 
pollution-induced placental epigenetic alterations were observed 
during all trimesters of pregnancy34. This suggests that mater-
nal exposure to air pollution might damage placental functions. 
Previous studies have shown that perturbations in the maternal 
environment could be transmitted to the fetus by changes in placen-
tal functions31 and that ambient environmental insults on placenta 
had negative effects on the developing fetus35.

In addition, poor air quality was significantly associated with 
the amount of polycyclic aromatic hydrocarbons (which can be 
absorbed by or adhere to PM2.5) bound to DNA in both maternal 
and fetal cord white blood cells36. Mothers exposed to air pollution 
were more likely to have chromosomal abnormalities37. Therefore, 
maternal long-term exposure to air pollution increased the chances 
of abortion/miscarriage, stillbirth and birth defects.

Furthermore, toxicants could pass through the placenta and 
attack the developing fetus by potentially inducing alterations in 
immune competence38. CO might interfere with metabolic and 
transport function of the placenta and, after crossing the placen-
tal barrier, collect at higher concentrations in the fetus than in the 

mother39. Moreover, ambient CO was associated with carboxy-
haemoglobin (COHb) and nucleated red blood cells40. Redundant 
COHb in mothers might cause fetal hypoxia, which could lead to 
fetal death41.

Since there was strong collinearity between PM2.5 and CO 
(Supplementary Tables 2 and 4), we could not separate the indi-
vidual effects of these two pollutants. Although we were able to 
adjust for many known risk factors for MAFT that would confound 
the association, residual confounding cannot be ruled out, as it is 
possible that other factors we were unable to control for, such as 
traffic-related noise, may be associated with pregnancy outcome. 
The impacts of indoor air pollution on MAFT were not studied due 
to the lack of indoor pollution data, although indoor and ambient 
pollution (type and severity) are highly correlated.

Associating air pollution with the spatial–temporal variability in 
MAFT enhances scientific and policy understanding of pregnant 
women’s health in developing countries42. Our findings uncovered 
potential opportunities to prevent or reduce harmful pregnancy 
outcomes by proactive measures before pregnancy. Meanwhile, our 
study helped us understand the relationship between air pollution 
exposure and a spectrum of reproductive outcomes.

Pregnant women or those who want to become pregnant, must 
protect themselves from air pollution exposure not only for their 
own health but also for the health of their fetuses. China is an aging 
society and our study provides an additional motivation for the 
country to reduce ambient air pollution for the sake of enhanc-
ing the birth rate. Although ambient air pollution has reduced in 
China in recent years16, pollution levels are still high and must 
reduce further for many reasons, including reducing MAFT. Future 
work should explore the human health benefits from air pollution 
mitigation through modelling a wide range of environmental con-
ditions using more data sources including land-use and land-cover 
change data43.

Methods
Maternal clinical dataset. We collected, processed and selected maternal clinical 
data as explained below.

Collection of clinical data. We collected clinical data of 260,231 pregnant women in 
Beijing, China. Pregnancy outcomes were classified according to the International 
Classification of Diseases, 10th revision44.

Validation of the dataset. Here we presented an independent validation of the 
dataset. Specifically, a midwife familiar with clinical coding techniques randomly 
selected 926 maternity case notes and then compared these case notes with those 
recorded in the dataset. The comparison results were re-checked by an obstetrician 
who had undergone training in clinical coding.

The 926 maternity case notes were randomly sampled at the maternity hospital 
wards (H-1, H-2, H-3 and H-4). Samples of 235, 247, 203 and 241 singleton 
deliveries were selected from these wards, respectively.

Two pregnancy outcome metrics were adopted to measure the quality of 
the data. The first metric was percentage agreement between the contents of 
ten selected fields recorded in the dataset and their counterpart data extracted 
from the maternity notes. The second metric uses Cohen’s Kappa to assess the 
consistency between the two datasets.

For the 926 cases examined, the contents of the ten fields were consistent 
between the data and case notes, with the percentage agreement exceeding 95% 
for all fields and hospitals (Supplementary Table 4). The values of Kappa were also 
much larger than 0.6, indicating high agreement45. The validation result provided 
confidence in the reliability of the dataset.

Data screening for MAFT based on gestational age. We only considered fetal loss 
occurring at <98 d (14 weeks) of gestation in this study.

Gestational age was computed as the number of days between the date of the 
LMP and the date of fetal mortality. It was difficult to determine gestational age 
precisely since fetal mortality might happen weeks before it was found. In this 
study, we estimated the gestational age as follows.

We assumed the date of fetal mortality to be 2 weeks before the abortion date, 
when the number of weeks from the LMP to the abortion date was >7 weeks. 
Otherwise, we assumed the date of fetal mortality to be the abortion date, due 
to fetal heart not being monitored in the first 5 weeks of the first trimester. The 
abortion procedure was done on the date a fetus was determined dead for almost 
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all cases, except in rare occasions in which clinical complications and other issues 
led to a 1–2 d delay in the abortion procedure. Ultrasound was used to determine 
whether a fetus was alive or dead.

Pregnant women in Beijing usually had one prenatal care visit every month 
in the first trimester. They were checked by ultrasound when maternal or fetus 
anomalies were suspected based on regular, non-ultrasound examinations. In 
addition, vaginal bleeding often occurred after fetuses died. When pregnant 
women found vaginal bleeding, they usually went to hospital and were checked 
by ultrasound to determine whether their fetuses had died. The above two aspects 
helped to detect fetal death as early as possible and decreased the bias in the 
gestational age estimation. Moreover, since we assessed the relationship between air 
pollution and MAFT using clinical data over 9 years (from 2009 to 2017), the effect 
of errors in estimated gestational ages could be reduced.

Very early losses like biochemical pregnancy and stillbirth were beyond the 
scope of our research, thus pregnant women whose fetal gestational ages were less 
than 40 d or were more than 98 d from the LMP were excluded.

Other data screening. Pregnant women were asked to provide the address they 
had lived at for the longest in the half-year before and during pregnancy. Women 
were excluded from the current study if there were no records of their addresses. 
Those with irregular menstruation cycles or with a history of miscarriage were 
also excluded; the dataset recorded the miscarriage dates. We did not account for 
maternal smoking status, since most Chinese women do not smoke, especially 
before and during pregnancy.

Basic statistics of finally selected data. After all the aforementioned exclusions, data 
for a total of 255,668 women in Beijing from 2009 to 2017 were valid for analysis 
(Supplementary Table 5).

Air pollution data. We used air pollution data from 34 air quality monitoring sites 
(see their spatial distribution in Supplementary Fig. 10). Hourly measurements 
were established in 2013 and maintained by the Ministry of Ecology and 
Environment (MEE, formally the Ministry of Environmental Protection). Air 
pollution measurements at the MEE sites followed the official measurement 
standards46. For SO2, O3 and CO measurements, there were few valid data before 
June 2014, thus for these pollutants we only used data from June 2014 to December 
2017 in this study. Daily mean pollutant concentrations were derived from hourly 
data of each day and the average of daily mean values during the exposure phase 
was used as the exposed concentration. Measured pollutants included PM10, PM2.5, 
SO2, CO, NO2 and O3. The NO2 measurements were not used here due to concerns 
regarding contamination by other nitrogen pollutants47. We excluded the PM10 
data, which contained many missing values.

To extend the PM2.5 data time period previous to June 2014, we made use of 
the long-term measurements taken by the US Embassy (http://www.stateair.net/
web/historical/1/1.html; accessed 12 July 2018). PM2.5 measurements at the US 
Embassy site used the beta-attenuation instrument. The US Embassy data were 
shown to be consistent with the MEE measurements16. For data at each MEE site 
from June 2014 to December 2017, we established a linear relationship with the US 
Embassy data on an hourly basis. Measurements at each MEE site were consistent 
with those at the US Embassy site: R2 ranged from 0.47 to 0.93 with an average 
of 0.70 (Supplementary Table 6). This consistency allowed us to apply the linear 
relationship to prior periods when there were no MEE measurements, as done 
here. Our further test using only data from June 2014 to 2017 suggested a similar 
association between PM2.5 exposure and MAFT (Supplementary Table 7), which 
supported our use of US Embassy data for earlier times.

Meteorological measurement data. Three-hourly data for air temperature at 2 m 
above ground were taken from the meteorological measurement station near the 
southwestern Fourth Ring Road of Beijing (Supplementary Fig. 10). Data at this 
station were reported to the World Meteorological Organization and maintained 
at the US National Oceanic and Atmospheric Administration National Centers for 
Environment Information (https://www.ncdc.noaa.gov/isd/data-access; accessed 24 
October 2018). Daily mean air temperature was derived from 3-hourly data.

Interpolation of missing air pollutants and air temperature data. There was 
large diurnal variation in each air pollutant and meteorological variable. To fill in 
the missing meteorological or air pollution data to accurately quantify the exposure 
level of each pregnant woman, we interpolated the missing values using the same 
interpolation methods as in our previous study48.

Maternal exposure to air pollutants. Maternal residential and working district 
addresses before or at the period of conception and air quality monitoring stations 
were geocoded to obtain their latitudes and longitudes. Most of the participating 
pregnant women did not change their residences and working places before the 
first trimester of pregnancy. We estimated maternal exposure to air pollution by 
attributing representative concentrations provided by the air quality monitoring 
stations closest to the maternal residence and working place after geolocalization.

Approximately 86% of the pregnant women provided the working addresses. 
Since most pregnant women in the first trimester still went to work in China, 

the women who provided work addresses were assumed to work; therefore we 
estimated pollutant concentrations based on both their residence and work 
addresses. For each pregnant woman, the exposure concentration of each air 
pollutant Cd was computed as Cd = (Cdw/3) + (2Cdr/3), where Cdw and Cdr denote 
air pollutant concentrations at the air monitoring stations closest to the maternal 
working and residential addresses, respectively. The weights (1/3 and 2/3) 
approximately accounted for the times a pregnant woman spent at work and at 
home. For the other 14% of pregnant women who did not provide work addresses, 
we assumed that they did not go to work and we only used their residential 
addresses to estimate the pollution exposure.

To define the period of pollution exposure, we first determined the LET of 
pregnant women before MAFT. We took the date of the LMP plus gestational age 
as the LET of the pregnant woman. We examined whether and how the exposure–
response association was affected by different time periods of pollution exposure. 
We examined seven time windows of maternal exposure to air pollution (Phases 
1–7), each from 0, 30, 60, 90, 120, 150 or 180 d before the first day of the LMP to 
the LET. We calculated the mean daily concentrations (the average of 24-h average 
across multiple days) of the pollutants in different periods (Phase 1, Phase 2 and 
so on) during which a pregnant woman was exposed. We showed that exposure 
in Phase 4 (from 90 d before the LMP to the LET) had strongest association with 
MAFT and these data were used for the analyses.

Spatial generalized additive model. Spatial autocorrelation was considered in this 
study. Supplementary Fig. 11 shows that most pregnant women with MAFT were 
clustered in densely populated areas where air pollution was high.

The spatial generalized additive model was used to account for variation.

g uð Þ ¼ β0 þ s PM2:5; df1ð Þ þ s SO2; df2ð Þ þ s O3; df3ð Þ
þs CO; df4ð Þ þ s lat; longð Þ

ð1Þ

where u = E(Y) is the mathematical expectation of Y and Y(t = 1, 2, 3, …, n) 
denotes the set of the participating pregnant woman; g is a monotonic link function 
of u; β0 is the intercept; df represents the degree of freedom and is used to control 
the impact of various pollutants; (lat, long) denotes the location of the residence or 
working place of a pregnant women; s is a smooth function; and s(lat, long) denotes 
the impact of the spatial autocorrelation on the MAFT risk.

Supplementary Fig. 12 illustrates the partial residuals of s(lat, long) through 
controlling the spatial distribution of the pregnant women in the generalized 
additive model. It is noted that the spatial distribution of the pregnant women 
in the lower right corner of the domain had large residual differences and a 
large degree of aggregation, which indicated that the data may have the spatial 
autocorrelation.

Logistic regression and restricted cubic spline regression. We used a logistic 
regression model to evaluate the risk factors that influence MAFT. The results 
of the analysis showed that the mother’s age, mother’s occupation, ambient air 
temperature and maternal exposure to each of the pollutants PM2.5, SO2, CO and 
O3 were correlated with the MAFT risk.

Potential confounding factors were controlled in the final logistic regression 
model. In addition, when associating each pollutant with MAFT, other pollutants 
were controlled in the logistic regression model30. Taking into consideration 
the possibility that the OR might be influenced by spatial dependence among 
participating pregnant women, the logistic regression model was formulated as

ln P
1�P

� �
¼ β0 þ β1X1 þ β2X2 þ β3X3 þ β4X4

þβ5X5 þ β6X6 þ β7X7 þ γ latð Þ þ δ longð Þ
ð2Þ

where P denotes the probability of the MAFT risk and β0 is a constant term; β1, 
β2, …, β7 are the regression coefficients of the independent variables X1 to X7 
(X1 denotes the mother’s age at conception, X2 the mother’s occupation, X3 the 
ambient air temperature, X4 is the ambient PM2.5 concentration, X5 is the ambient 
SO2 concentration, X6 is the ambient O3 concentration and X7 is the ambient CO 
concentration). The OR value of each independent variable is ORi = exp (βi); γ 
and δ are the coefficients; (lat, long) is the geographical location of the maternal 
residence or work place.

We also used the restricted cubic spline regression model49 to help associate air 
pollution exposure and the MAFT risk. In the restricted cubic regression spline, 
the function was linear in two intervals, [t0, t1] and [tk−1, tk], of a predicting variable, 
so the restricted cubic regression spline, RCS(X), can be described as

RCS x; kð Þ ¼
Xk�1

i¼1

βiSi Xð Þ ð3Þ

with

S1 xð Þ ¼ x

Si xð Þ ¼ x � ti�1ð Þ3þ�
x�tk�1ð Þ3þ tk�ti�1ð Þ

tk�tk�1
þ x�tkð Þ3þ tk�1�ti�1ð Þ

tk�tk�1
if i≥2

x� ti�1ð Þ3þ ¼ x � ti�1ð Þ3 if x≥ ti�1

0 else

�
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where k denotes the number of the nodes and Si denotes the spline function; x is 
the value of a continuous exposure X, i is an integer and t denotes the endpoint of 
each interval. We selected four nodes representing the 25th, 50th, 75th and 95th 
percentiles of PM2.5 concentrations and three nodes representing the 25th, 50th and 
75th percentiles of SO2, O3, CO concentrations, respectively.

The logistic regression model could be combined with the restricted cubic 
splines to deal with the nonlinear relationship between the response variables 
and independent variables. We combined the two models to assess the exposure–
response relationship. We associated MAFT and each air pollutant (PM2.5, 
SO2, CO and O3) separately. Using the spline function RCS(x) to replace the 
independent variable x in equation (2), we estimated the nonlinear relationship 
between the exposure concentration of each air pollutant and the MAFT risk 
through equation (4).

ln
P

1� P

 
¼ β0 þ β1X1 þ    þ

Xk�1

i¼1

βiSi Xð Þ þ γ latð Þ þ δ longð Þ ð4Þ

Correlations between air pollutants. We computed the correlations between 
individual air pollutants, on the basis of daily mean air pollution concentration 
data from June 2014 to December 2017 that were obtained from 34 air pollution 
monitoring stations in Beijing (Supplementary Table 2). We found that PM2.5 and 
CO had the strongest correlation. We constructed a multivariate linear model to 
further analyse the multicollinearity between pollutants. The variance inflation 
factor of PM2.5 was larger than 10.0, suggesting that PM2.5 had collinearity with 
other pollutants (primarily CO) (Supplementary Table 8). Similarly, the variance 
inflation factor of CO was close to 10.0, reflecting its high collinearity with PM2.5.

Data availability
The collected data are available from the corresponding authors on  
reasonable request.

Code availability
The source code is available from the corresponding authors on reasonable 
request. It is copyrighted by Beijing Normal University and Beijing Obstetrics and 
Gynecology Hospital and is to be used only for educational and research purposes. 
Any commercial use is prohibited.
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